GEOLOGICAL CURATORS’ GROUP
Registered Charity No. 296050

The Group is affiliated to the Geological Society of London. It was founded in 1974 to improve the status of geology in museums and similar institutions, and to improve the standard of geological curation in general by:
- holding meetings to promote the exchange of information
- providing information and advice on all matters relating to geology in museums
- the surveillance of collections of geological specimens and information with a view to ensuring their well being
- the maintenance of a code of practice for the curation and deployment of collections
- the advancement of the documentation and conservation of geological sites
- initiating and conducting surveys relating to the aims of the Group.

2009 COMMITTEE

Chairman Helen Fothergill, Plymouth City Museum and Art Gallery, Drake Circus, Plymouth, PL4 8A], U.K. (tel: 01752 304774; fax: 01752 304775; e-mail: helen.fothergill@plymouth.gov.uk)

Secretary David Gelsthorpe, Manchester Museum, Oxford Road, Manchester M13 9PL, U.K. (tel: 0161 2752660; fax: 0161 2752676; e-mail: David.gelsthorpe@manchester.ac.uk)

Treasurer John Nudds, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K. (tel: +44 161 275 7961; e-mail: john.nudds@manchester.ac.uk)

Programme Secretary Steve McLean, The Hancock Museum, The University, Newcastle-upon-Tyne NE2 4PT, U.K. (tel: 0191 2226765; fax: 0191 2226753; e-mail: s.g.mclean@ncl.ac.uk)

Editor of The Geological Curator Matthew Parkes, Natural History Division, National Museum of Ireland, Merrion Street, Dublin 2, Ireland (tel: 353 (0)87 1221967; e-mail: mparkes@museum.ie)

Editor of Coprolite Tom Sharpe, Department of Geology, National Museums and Galleries of Wales, Cathays Park, Cardiff CF10 3NP, Wales, U.K. (tel: 029 20 573265; fax: 029 20 667332; e-mail: Tom.Sharpe@museumwales.ac.uk)

Recorder Michael Howe, British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GQ, U.K. (tel: 0115 936 3105; fax: 0115 936 3200; e-mail: mhowe@bgs.ac.uk)

Minutes Secretary Tony Morgan, Clore Natural History Centre, World Museum Liverpool, William Brown Street, Liverpool L3 8EN, U.K. (tel: 0151 478 4286; fax: 0151 478 4390; e-mail: tony.morgan@liverpoolmuseums.co.uk)

Committee David Craven, Bolton Museums, Art Gallery and Aquarium, Le Mans Crescent, Bolton, Greater Manchester BL1 1SE, U.K. (tel: 01204 338674/557661; fax: 01204 332241; e-mail: david.craven@bolton.gov.uk)

Lyall Anderson, Dept. of Earth Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EQ (tel: 01223 333417; e-mail: land07@esc.cam.ac.uk)

Co-opted members: Leslie Noé (NatSCA representative), Curator of Natural Science, Thinktank, Birmingham Science Museum, Millennium Point, Curzon Street, Birmingham B4 7XG. (tel: 0121 202 2327; e-mail: Leslie.Noee@thinktank.ac)

Hannah Chalk, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K. (tel: 0795 6208704; e-mail: Hannah-lee.Chalk@manchester.ac.uk)

Cindy Howells, Department of Geology, National Museums and Galleries of Wales, Cathays Park, Cardiff CF10 3NP, Wales, U.K. (tel: 029 20 573554; fax: 029 20 667332; e-mail: cindy.howells@museumwales.ac.uk)

Will Watts, Scarborough Museums & Gallery, Town Hall, St Nicholas Street, Scarborough Y011 2HG, U.K. (tel: 01723 232572; fax: 01723 376941; e-mail: Will.watts@scarborough.gov.uk)

The views expressed by authors in The Geological Curator are entirely their own and do not represent those of either the Geological Curators’ Group or the Geological Society of London unless otherwise stated.

© The Geological Curators’ Group 2009. ISSN 0144 - 5294

Cover: Left valve of Gryphaea arcuata shell after acid digestion; scale bar 1 cm. [See paper by Baar on pages 29-33]
THE GEOLOGICAL CURATOR

VOLUME 9, NO. 1

CONTENTS

THE COLLECTION OF CONULARIIDS OF THE NATURAL HISTORY MUSEUM OF LONDON
by Consuelo Sendino and Jill Darrell ... 3

IN FROM THE COLD: AN OVERVIEW OF THE BRITISH ANTARCTIC
SURVEY FOSSIL COLLECTIONS
by Hilary J. Blagbrough .. 21

ACID DIGESTION OF SILICIFIED SHELLS
by Christian Baars ... 29

BOOK REVIEW .. 34

OBITUARY: HOWARD BRUNTON (1935-2008) ... 35

LOST AND FOUND .. 2
263. A portrait of the Comte de Bournon?
Jess Shepherd, St. Aubyn Project, Plymouth City Museum and Art Gallery, Drake Circus, Plymouth, PL4 8AJ, UK; Tel: 01752 30 4774; e-mail: st.aubyn@plymouth.gov.uk

I was wondering if anyone knew of a portrait of a gentleman called Comte Jacques Louis de Bournon (1751-1825)? Both Plymouth City Museum and Art Gallery and The Natural History Museum in Paris are desperately trying to locate a portrait of this man. Any information would be gratefully received.

264. Pliosaur; request to search for a missing bit
Richard Edmonds.
e-mail: r.edmonds@dorsetcc.gov.uk

We have purchased a huge pliosaur skull from the Black Head area of Osmington, Dorset, using money from the HLF Collecting Cultures fund secured by Dave Tucker, our Museums Advisor here in Dorset.

The specimen includes the skull and the lower jaws but the spatulate end of the jaws is missing. Judging by the weathering and selenite on the bones, they have been weathering near the cliff face for a good few years so the missing section, the spatulate end joining the jaws together, must have been exposed many years ago. This would be a very distinctive piece of bone - assuming it is in one piece, which is possible, it should be about 40cm long. The broken faces of the bone are about 20cm in cross section.

I know that this is a long shot but does anyone have a specimen matching this description from the area? It would be an amazing feat to link them up together again!

Attached is a photo of the beast. The jaws are obviously arranged wider apart than they would originally have been. We are working on some exciting ideas on how to display this specimen. What ever we do it is going to be impressive!

Richard
THE COLLECTION OF CONULARIIDS OF THE
NATURAL HISTORY MUSEUM OF LONDON

by Consuelo Sendino and Jill Darrell

Introduction

Conulariids are extinct cnidarians (Van Iten et al., 2006), with a worldwide distribution in the fossil record. They have been found from the Ediacarian (Caster, 1957; He, 1984; Ivantson and Fedonkin, 2002) to the Triassic (however, some authors have recorded supposed Lower Jurassic conulariids: Argéliez, 1856; Dana, 1863; Kayser, 1924; Zittel, 1924, 1927). This comprises a geological duration of more than 400 million years, with 52 genera and 357 described species. The Natural History M useum in London houses specimens belonging to more than 11 genera and 85 species.

These fossils have exoskeletons with a four-sided, acute pyramidal shape (Figure 1). They are usually preserved in the original calcium phosphate, or as internal moulds (steinkerns). Their size ranges from a few millimetres up to about 500 millimetres (Kiderlen, 1937; Boucek, 1939). The stratigraphical record of conulariids extends from the Upper Precambrian, in the Nama Series of South Africa (Caster 1957) to the Lower Jurassic of Avéyron (France) (Argéliez 1856) and North America (Dana 1863; Kayser 1924; Zittel 1927).

An important part of our historical heritage is contained in museums, and natural history museums are storekeepers of that heritage concerning the evolution of life. Fossils are key to the understanding of the evolution of both extinct and extant species, and their study may also provide us with a glimpse of the future for life on Earth. The Natural History M useum (NHM) in London contains the most diverse collection of conulariids in the world. In terms of diversity the NHM collection surpasses that of the Národní M useum (National M useum, Prague) in which more than 2,000 specimens from Ordovician to Devonian rocks in the Prague Basin are housed, collections that include conulariids collected by Barrande, one of the early authors to have been interested in these fossils.

Figure 1 Example of a well preserved conulariid, Conularia subcarbonaria (NHM G35) from the Carboniferous of Indiana (surrounding matrix digitally removed).
The NHM contains an historical collection of conulariids that began in 1841, and includes contributions from one of the most important collectors of Palaeozoic invertebrates during the 19th century, Mrs Elizabeth Gray.

The NHM collection is one of the most emblematic for any naturalist, its fossil cnidarian collection containing 76 type specimens of which 17 are of conulariids. The wide geographical coverage of the NHM fossil collections reflects the extension of the British colonies across all continents, frequent exchanges with other museums, and the purchase of individual specimens and entire collections.

The conulariid collection consists of 1,131 specimens, ranging from Upper Cambrian to Upper Triassic, a geological timespan of some 300 million years. This collection was important during systematic and taxonomic studies of conulariids at the beginning of the 20th century, and it remains a crucial reference collection for modern researchers. It is the most significant international collection because of its taxonomic diversity and it embraces the greatest geographical and stratigraphical range, with 165 localities distributed all over the world. Most of the 17 type specimens are from the monograph on British conulariids by Slater (1907).

The history of the NHM conulariid collection began in 1841, 20 years after James Sowerby described the genus Conularia Miller in his work The Mineral Conchology of Great Britain (Sowerby 1821). The first conulariid to be acquired was a specimen of Paraconularia quadrisulcata (Sowerby 1821). This specimen came from the Gilbertson Collection, assembled by the chemist William Gilbertson (1789-1845) who collected fossils from the Carboniferous of northeast Lancashire, close to Preston where he lived. The NHM conulariid collection increased in size gradually until the end of the 1970s, with the discovery of several conulariids by two NHM scientists (S.F. Morris and R.P.S. Jefferies) at in an excavation in Scotland. The collection currently consists of 1,131 specimens that are distributed among 11 genera and at least 85 species.

Origin and date of acquisition of the specimens

One of the most important collections of conulariids in the NHM collection is that of Elisabeth Gray. Mrs Robert L. Gray (née Anderson) (1831-1924) was the first woman known to have collected conulariids. Her material came from Girvan in Ayrshire, Scotland and represents the first recording of this locality (Oldroyd 1990). All of the specimens that she collected were acquired by the NHM in either 1920 or 1937, and they form an important part of the Museum's conulariid collection, totalling 463 specimens.

Other collections of conulariids worth highlighting include that of Dr Joaquim Barrande who sold a total

Figure 2. Origin versus abundance of the conulariid collection in the NHM.
of 30 specimens to the NHM in 1856. Thirty specimens were acquired from the Rev. John Purdue in 1870, 15 from James E. Lee in 1885, 22 from Professor Joseph Prestwich in 1894, and 19 from the Geological Society of London in 1911. The remaining conulariids incorporated comprise smaller collections that accumulated progressively through time, such as specimens from the Bath Royal Literary and Scientific Institution and from the Ludlow Museum that were acquired between 1905 and 1939, and also some purchases, bequests by other palaeontologists and contributions by Museum staff members, for example Dr Francis Arthur Bather (1863-1934) in 1907 and Dr William T. Dean in 1956. The origins and incorporation dates are not recorded for every conulariid accessioned, but this data is available for more than 70% of the collection (Figures 3 and 4).

In the graphic representation of the origin of conulariids in the NHM collections (Figure 2), accessions of fewer than seven specimens have been grouped according to the exact number of specimens (i.e. 1, 2, 3, 4, 5 or 6).

38 accessions comprise only one specimen; these came from the following sources: W.E Balston; S. Bowerbank; F.W. Cassirer; R. Chaplin; A.J. Charig; W.N. Croft; M.C. Crosfield; L.G. de Koninck, C.L. Dixon (collection of the British Honduras Geological Survey); V. Fric; E.J. Garwood; W. Gilbertson; J. Gray; J. Hamling; F. Harford; H. Hicks; D. Homfray; Governors of King’s School Sherborne (Dorset); W. Legrand; M. Lindström; J.A. Moy Thomas; Musée Royal d’Histoire naturelle de Belgique (Brussels); Muséum national d’Histoire naturelle (Paris); P.E. Negus; R.B. Newton; K.P. Oakley; J. Parrot; S.J. Pollen; G.H. Piper; T. Ruddy; Shrewsbury Museum and Art Gallery (Rowley’s House); Sowerby Collection; T.S. Steven; J. Tennant; T. Tesson; C.T. Trechmann; G.R. Vine, G.R. snr; W.F. Whittard.

Accessions comprising two specimens are: C. Croft; R. Etheridge Snr; T.T. Johnson; C. Kloucek; M. Marston; S.F. Morris and R.P.S. Jefferies; H. Pearce; A.S. Piret; A. Schubert; S. Smith; I.A. Stigand; A. Templeman; Rheinisches Mineralien-Kontor (Bonn); W.R. Smith; W. Vicary.

Accessions comprising three specimens: Bath Royal Literary and Scientific Institution; C. Birley; W.T. Dean; W.M. Lechmann; W. McPherson; Museum of Practical Geology (London); C. Purdom Clarke.

Accessions comprising four specimens: F.H. Butler; W. Ogier; S.P. Pratt; B. Stürtz.

Accessions comprising five specimens: B. Dunstan; T.R.R. Stebbing; Percy Sladen Trust Expedition.

Accessions comprising six specimens: C.C. Grant; Ludlow Museum Collection.

Three stages are evident in the incorporation of new material into the collection (Figure 3). During the first stage, from 1841-1911, the collection grew at an almost constant rate, with the exception of a decrease in the decade 1871-1880.

Figure 3. Temporal distribution of accessions of conulariids into the NHM collection.

Figure 4. Stratigraphical distribution and generic and specific diversity of the collection of conulariids in the NHM. Note that whereas abundance values can be read directly, correct diversity values are obtained by dividing the number of the vertical axis by 10.
The second stage entailed incorporation of the Mrs Robert Gray Collection, that of the Geological Society of London, the G.J. Hinde Collection, and the contributions of F.A. Bather, F.H. Butler, I.A. Stigand, C. Kloucek, R.B. Newton, and T. Ruddy in the decade 1911-1920. This led to the growth of the conulariid collection to almost 500 specimens. The final stage was one of progressive decline in acquisitions until the last register entry in April 1979, consisting of two specimens collected by S.F. Morris and R.P.S. Jefferies (NHM) from an excavation in the Ordovician of Girvan (Ayrshire, Scotland). The decline in acquisitions of new samples may be due to a lack of scientists studying conulariids in the United Kingdom, in contrast to Brazil which lacked a tradition in conulariid study until recently and where collections have been increasing through new discoveries (Rodrigues et al. 2003).

The NHM collection begins in the Cambrian with a specimen from the Agnostus Shales of Krekling (Norway), and multiplies in the Ordovician with 624 specimens, followed by the Carboniferous and the Silurian, with 234 and 167 samples respectively (Figure 4). Species to highlight are Conularia planisepata Slater, 1907, and Metaconularia slateri (Reed, 1933), with 118 and 83 specimens respectively. They come from the Starfish Bed (Ardmillan Series, Upper Drummuck Group) of Girvan, Ayrshire, Scotland, at that time part of the ancient continent of Laurentia. These samples are mainly from the Mrs Robert Gray Collection.

The Ordovician collection contains the greatest diversity with 8 genera and 25 species, followed by the Silurian with 6 genera and 19 species.

In general, abundance parallels diversity in conulariids, except for the high abundance in the Silurian. The abundant Silurian material described by Jerre (1993) from Gotland (Sweden) is fragmentary and of low diversity (two genera, six species).

Geographical distribution

The 165 localities represented in the NHM conulariid collection are spread among 21 countries (Figure 5), embracing more than any other museum of the world. This reflects the old British colonies that were distributed almost globally, for there are samples from places as distant as South Africa, Australia, Canada and the Falkland Islands. Localities from the United Kingdom (85) predominate, with the most prolific being in Girvan, from where Elisabeth Gray contributed almost half of the NHM collection. These localities are comparable in abundance, but not diversity, to those in the Bohemian Basin that are represented in the collections of the Národní muzeum (National Museum, Prague). The NHM material embraces the palaeocontinents of Avalonia, Baltic, Gondwana and Laurentia, but is notably lacking in material from China, Siberia and Kazakhstan. Other places from where there are no specimens have almost no representation in the stratigraphical record. Therefore, the NHM collection is sufficiently representative for palaeobiogeographical studies due to its representation and abundance.
Specimen labels

More than 90% of the conulariid specimens have labels (Figure 6). These labels not only give stratigraphical and geographical data but also give us the history of the specimens, forming a valuable source of curatorial information.

Some of the labels are standard NHM labels, others derive from earlier repositories. The latter are always retained. Two kinds of labels are more important than the others: standard NHM specimen labels, and labels stuck onto the specimens that note the original collection and stratigraphical and geographical information. Within label categories there is a great variety depending on the writing type (by hand or by printer), type of ink (seal, fountain pen, pencil, pen), colour of the ink (black, blue and red), if they are on paper or Bristol Board, and which colour.

Figure 6. Types of labels found in the NHM conulariid collection.
Of particular historical importance are Slater's (1907) handwritten identifications on several labels. Slater's handwriting can be inferred thanks to the existence of a letter of hers in the NHM (Figure 7), as well as fragments of paper on which are written determinations from her monograph on the British conulariids.

According to their importance, labels can be classified as follows:

TYPE 1: These are the standard NHM labels (Figure 6A). They have the following fields, not all of which are always completed: (1) taxon determination; (2) stratigraphical level; (3) geographical locality; (4) origin and date of acquisition; and (5) registration number. In the case of type specimens, like those of Slater (1907), type status information is also given. Labels are square, of white paper, with a standard measurement of 45 x 45 millimetres (2 x 2 inches), with writing in black ink. They have a black line forming a border two millimetres from the perimeter. Some were written with a pen, others a pencil, or they may be stamped (Figure 6B) diagonally to indicate that the determination was made by Slater (1907) with the words "Miss I. L. Slater determination". However, the stamping was done much later at the time of registration of the specimens in 1960.

TYPE 2: Printed NHM labels are affixed to the wooden tablets of some specimens (Figure 6C). These are square, and have a size appropriate to the size of the specimen. As with the previous type, such labels are made of white paper and they have a border with a black line forming a frame to the label. These labels are usually only found in well-preserved and figured specimens, giving information on author, publication and figure. They indicate that the specimen was formerly on exhibit in the public galleries of the NHM.

TYPE 3: Labels of the NHM, on square white paper, written by hand or printed in black ink, stuck to the specimens with only the following information: "Starfish Bed. Upper Bala. GRAY " (Figure 8). Those written by hand vary in size according to the size of the fossil, and are all written with the same calligraphy and fountain pen. In contrast, those that are printed have a standard size of about 15 x 7 millimetres (Figure 8). These samples belong to the Mrs Robert Gray Collection.

TYPE 4: White, square paper labels of various sizes were stuck to the undersides of some specimens before they came to the NHM (Figure 6D). They are written by hand, with pen and in black, with all the information except for the year of acquisition. Such labels are found only on the largest conulariids (e.g. *Metaconularia pyramidata* (d'Orbigny)) because the labels exceed 60 millimetres in width.

TYPE 5: These are circular labels, about 29 mm in diameter, of white paper, written by hand, with pencil or red or black pen. They are on the lids of small tubes housing the conulariids (Figure 6E) and include the determination and registration number.

TYPE 6: Hexagonal labels of six unequal sides, written with fountain pen and much deteriorated, measure approximately 15-27.5 millimetres. They are made of white Bristol Board (Figure 6F), and give only the determination and registration number. It is likely that they were part of boxes that once housed the specimens.

TYPE 7: These labels have the original determinations of Slater (1907) written using fountain pen on white paper. They comprise ripped paper, very variable in size and irregular in shape (Figure 6G). The registration number was added later in a different graphic. The determination and the figure and pages where they are described in Slater's *Monograph of British Conulariae* are written on the labels.

TYPE 8: Other labels with the determinations of the original collectors comprise white or blue paper, and are written in black ink. They are as varied as the number of collectors (Figure 6H-6J), some with a standard format but others without. They contain much the same information as the standard NHM labels.

TYPE 9: These comprise labels produced during revisions of the samples made in the last 32 years. For example, there is the redetermination that was carried out by K. Brood in 1976 of a hypotype of...
Conularia aspersa Lindström, 1884 (Slater 1907: 19-20, pl. 1: fig. 5) as Metaconularia slateri, in which he used a white paper label of the Naturhistoriska Riksmuseet, Stockholm (Swedish Museum Natural of History) that includes the usual fields (registration number, determination, stratigraphical bed, locality, author of determination and year) and with a similar design to the format of the NHM labels. In 1984, J. Mortin redetermined 52 specimens, writing his identifications on pieces of lined white paper using a blue pen (Figure 6K). Redetermination, author and year are given, sometimes without format. More recently Dr Heyo Van Iten (Hanover College, Indiana) (Figure 6L) has written some labels in the format of the NHM, with registration number, determination, author and date. They are rectangular, 82 x 40 mm in size, and written with blue pen.

Type 10: This type of label has morphological remarks pertaining to the associated specimens. There is no date, determination, or other kind of information. The labels are on white Bristol Board and written with a pen, without format and varied in size according to the information that they contain (Figure 6M). There are also labels with the stratigraphical horizon and locality, written without any format, and on white paper (Figure 6N).

Finally, registration numbers written in Chinese ink on oval, 7.5 x 10 mm yellow stickers of cotton paper are stuck onto most of the specimens (Figure 6O). In the case of types, there is also a 5-6 mm circular sticker in red or green. There are 13 unregistered specimens that are numbered with a black indelible marker on white paint.

For specimens that have been determined or re-determined, the corresponding labels have new details added. Deterioration of the oldest labels is evident (Figures 6J, 6N).

Conulariid collection

The Appendix lists the entire NHM conulariid collection according to: registration number (RN); previous determination (PD); stratigraphical horizon (SH); geographical locality (GL); and collection and dates of acquisition (CDA).

The genera and species are in alphabetical order. Taxa with open nomenclature (Bengtson 1988) are listed at the end of each genus. Note that some registration numbers that are repeated for more than one species.

Although most specimens have their origin and incorporation date, 173 are unregistered, of which 36 have little information, and most (133) are from the Mrs Robert Gray Collection. It is inferred that the latter come from the Starfish Bed (Hirnantian) of Girvan. Only 3.6% of specimens have no record of stratigraphy or locality.
Conclusions

The spread of this collection shows its historical value, beginning in 1841 with the first specimen (Paraconularia quadrisulcata (Sowerby, 1821)) originally coming from the Gilbertson Collection. The last accessions (Conularia planiseptata Slater, 1907 and Metaconularia slateri (Reed, 1933)) date from 1979 and were collected by staff of the NHM (S.F. Morris and R.P.S. Jefferies).

The historical value of the conulariid collection is reflected in the amount of type material, summarized as follows:
- Holotypes: 7 specimens (Slater 1907)
- Paratypes: 3 specimens (Slater 1907)
- Syntypes: 17 specimens (Sowerby 1821; Slater 1907)
- "Hypotypes": 11 specimens (Sharpe 1856; La Touche, 1884; Reed 1904; Slater 1907; Richter & Richter 1930; Trechmann 1918; Babcock et al. 1987).

The NHM conulariid collection has great scientific and historical value because of its diversity and representation from almost all the geological periods and continents. This makes it an essential reference for research on this group of extinct marine organisms encompassing palaeodiversity, palaeobiogeography and other palaeobiological studies.

Acknowledgements

This work was conducted as a part of a SYNTHESYS grant (GB-TAF-3278). Our most sincere thanks go to Paul Taylor for his help with revision.

References

BRITISH MUSEUM (NATURAL HISTORY), 1904-1912 The history of the collections contained in the Natural History Departments of the British Museum. British Museum, London.

APPENDIX: A CATALOGUE OF CONULARIIDS IN THE NATURAL HISTORY MUSEUM, LONDON

SA = sample abbreviation (record number)
PD = previous determination
SB = stratigraphic bed
GL = geographical locality
CDA = collection and dates of acquisition
SA = sample abbreviation (record number)

Genus Archaeoconularia Boucek, 1939

Archaeoconularia sp.
SA: PG 4448.
PD: No record.
SB: Middle Ordovician.
GL: Bandon Castle, Shropshire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia coronata (Slater, 1907)
SA: G 7760 (holotype).
PD: Conularia coronata Slater.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia teguldachi (Hicks, 1875)
SA: G 1636.
PD: Conularia teguldachi Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia homfrayi (Hicks, 1875)
SA: G 1636.
PD: Conularia homfrayi Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia densatica (Hicks, 1875)
SA: G 1636.
PD: Conularia densatica Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia coronata (Hicks, 1875)
SA: G 1636.
PD: Conularia coronata Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia cephalonica (Hicks, 1875)
SA: G 1636.
PD: Conularia cephalonica Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia desigliplicata (Hicks, 1875)
SA: G 1636.
PD: Conularia desigliplicata Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia undulata (Hicks, 1875)
SA: G 1636.
PD: Conularia undulata Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia undulata (Hicks, 1875)
SA: G 1636.
PD: Conularia undulata Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia undulata (Hicks, 1875)
SA: G 1636.
PD: Conularia undulata Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia undulata (Hicks, 1875)
SA: G 1636.
PD: Conularia undulata Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia undulata (Hicks, 1875)
SA: G 1636.
PD: Conularia undulata Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia undulata (Hicks, 1875)
SA: G 1636.
PD: Conularia undulata Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia undulata (Hicks, 1875)
SA: G 1636.
PD: Conularia undulata Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia undulata (Hicks, 1875)
SA: G 1636.
PD: Conularia undulata Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia undulata (Hicks, 1875)
SA: G 1636.
PD: Conularia undulata Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia undulata (Hicks, 1875)
SA: G 1636.
PD: Conularia undulata Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.

Archaeoconularia undulata (Hicks, 1875)
SA: G 1636.
PD: Conularia undulata Hicks.
SB: Middle Ordovician.
GL: Dudley, Worcestershire (England).
CDA: Rev. C. Croft, 1873.
Conularia perneri
CDA: C. C. Grant Collection, 1908.

Conularia niagarensis

Conularia planiseptata

Conularia subcarbonaria
CDA: G. J. Hinde Collection, 1918.

Conularia subparallela
CDA: No record.

Conularia simplex

Conularia undulata
SA: G 7374.
PD: Conularia sp.
SB: Wenlock (Silurian).
GL: Buiwals Bridge, Shropshire (England).
CDA: No record.

SA: G 12573.
PD: Conularia sp.
SB: Wenlock (Silurian).
GL: Dudley, Worcestershire (England).
CDA: No record.

SA: G 14619.
PD: Conularia sp.
SB: Mississippian (Carboniferous).
GL: Gulf of Carso (New Scotland).
CDA: No record.

SA: G 15287, G15289-G 15292, G 15295.
PD: Conularia sp.
SB: Starfish Bed (Upper Ordovician).
GL: Midleton, Cork (Ireland).
SA: G 22462.
PD: Conularia sp.
SB: Mississippian (Carboniferous).
GL: Carrigaline, Cork (Ireland).
CDA: No record.

SA: G 15293.
PD: Conularia sp.
SB: Budleigh Salterton Pebble Beds (Lower Triassic).
GL: Budleigh Salterton, Devonshire (England).
CDA: No record.

SA: G 19553, G 19557.
PD: Conularia sp.
SB: Mississippian (Carboniferous).
GL: Dudley, Worcestershire (England).
CDA: No record.

SA: G 22063.
PD: Conularia sp.
SB: Chasnoasperm macrosporite limestone (Middle Ordovician).
GL: Trencherd brook, Öland (Sweden).
CDA: Dr. F. A. Bather, 1907.

SA: G 22494-G 22495.
PD: Conularia sp.
SB: Mississippian (Carboniferous).
GL: Carrigaline, Cork (Ireland).
CDA: No record.

SA: G 23897.
PD: Conularia sp.
SB: Upper Devonian.
CDA: No record.

SA: G 24845-G 24846.
PD: No determination.
SB: Niagara Group (Ludlow, Silurian).
GL: Dundas (Ontario).
CDA: No record.

SA: G 24847-G 24849.
PD: Conularia sp.
SB: Niagara Group (Ludlow, Silurian).
GL: Rockwood (Ontario).
CDA: No record.

SA: G 24860.
PD: No determination.
SB: Agnostus Shales (Upper Cambrian).
GL: Kurekling, Oslo (Norway).
CDA: G. J. Hinde Collection, 1918.

SA: G 41204.
PD: Conularia sp.
SB: Pliensbachian series (Mississippian, Carboniferous).
GL: Congleton Edge, Cheshire (England).
CDA: No record.

SA: G 41205.
PD: Conularia sp.
SB: Facies Viseense (Mississippian, Carboniferous).
GL: Castleton, Derbyshire (England).
CDA: No record.

SA: G 41206.
PD: Conularia sp.
SB: Calcareous Sandstone series (Mississippian, Carboniferous).
GL: Glencarholm, Dumfriesshire (Scotland).
CDA: No record.

SA: G 43180-G 43183.
PD: Conularia sp.
SB: Balclatchie Group (Upper Ordovician).
GL: Ardmillian, Girvan (Ayshire, Scotland).
CDA: The Percy Sladen Trust Expedition, 1921, and picked up by D. M. S. W. Watson, 1915.

SA: G 46610-G 46611.
PD: Conularia sp.
SB: Strinchar Limestone (Middle Ordovician).
GL: Craighead, Girvan (Ayshire, Scotland).
CDA: No record.

SA: G 46659-G 46660.
PD: Conularia sp.
SB: Balclatchie Group (Upper Ordovician).
GL: Ardmillian, Girvan (Ayshire, Scotland).
CDA: Mr. Robert Gray Collection, 1920.

SA: G 46661.
PD: Conularia sp.
SB: Whitehouse Group (Upper Ordovician).
GL: Whitehouse Bay, Girvan (Ayshire, Scotland).
CDA: No record.

SA: G 46751.
PD: No determination.
SB: Starfish Bed (Upper Ordovician).
GL: No record.
CDA: No record.

SA: G 48650-G 48684.
PD: No determination.
SB: Llandovery (Silurian).
GL: Wooland Point, Girvan (Ayshire, Scotland).
CDA: No record.

SA: G 22390, G 46823, G 46841, PG 4376.
PD: Conularia sp.
SB: Starfish Bed (Upper Ordovician).
GL: Thinaive Glen, Girvan (Ayshire, Scotland).
CDA: No record.

SA: G 4215.
PD: Conularia sp.
SB: Calcareous Shale (Permo-Carboniferous).
GL: Mountain Pine Ridge (Belice).

SA: G 4346-PG 4347.
PD: No determination.
SB: Leptaena Limestone (Upper Ordovician).
GL: Bodabacken (Dalaracija, Sweden).
CDA: Dr. F. A. Bather, 1911.

SA: G 4350.
PD: No determination.
SB: Daleje Shale (Lower Devonian).
GL: Snogereka (Czech Republic).
CDA: Dr. F. A. Bather, 1923.

SA: G 4351.
PD: Conularia sp.
SB: Étage H of Barrande (Middle Devonian).
GL: Hiboucobe, next to Praga (Czech Republic).
CDA: No record.

SA: G 4352-PG 4358.
PD: Conularia sp.
SB: Étage G2 of Barrande (Lower Devonian).
GL: Hiboucobe, next to Praga (Czech Republic).
CDA: No record.

SA: G 4404.
PD: Conularia sp.
SB: Makan Series, Calcareous Shale (Permo-Carboniferous).
GL: Mountain Pine Ridge (Belice).

SA: G 4442-PG 4443.
PD: Conularia sp.
SB: Mississippian (Carboniferous).
GL: Eskdale, Cumberland (England).
CDA: No record.

SA: G 4445-PG 4447.
PD: Conularia sp.
SB: Reaschothius reuschi Zone (Upper Ordovician).
GL: Horderley, Shropshire (England).
CDA: No record.

SA: G 4449.
PD: Conularia sp.
SB: Reaschothius reuschi Zone (Upper Ordovician).
GL: Horderley, Shropshire (England).
CDA: Dr. W. T. Dean, 1956.
SA: PG 4453.
P.D: No determination.
SB: Orniia superba zone (Upper Ordovician).
GL: River Onny, Shropshire (England).
CDA: Dr. W. T. Dean, 1956.

SA: PG 4776.
P.D: Conularia sp.
SB: Silurian.
GL: Dudley, Worcestershire (England).
CDA: No record.

SA: PG 4500 (three specimens).
P.D: Conularia sp.
SB: Gothograptus nasus zone (Ludlow, Silurian).
CDA: No record.

SA: PG 43708.
P.D: Conularia sp.
SB: Buildwas beds (Wenlock, Silurian).
GL: Buildwas, Shropshire (England).
CDA: No record.

SA: PG 54216.
P.D: Conularia sp.
SB: Calymene quadrata beds (Upper Ordovician).
GL: Llafyllim, Montgomeryshire (Wales).
CDA: No record.

SA: R 3012.
P.D: Conularia sp.
SB: Cräighed Limestone (Upper Ordovician).
GL: Cräighed Quarry, Girvan (Ayshire, Scotland).
CDA: No record.

SA: 22 (two samples).
P.D: No determination.
SB: No record.
GL: No record.
CDA: No record.

Genus Ctenoconularia Sinclair, 1952

Ctenoconularia cunctata (Reed, 1933)
SA: PG 4313.
P.D: Conularia cunctata.
SB: Starfish Bed (Upper Ordovician).
GL: Thraive Glen, Girvan (Ayshire, Scotland).

Ctenoconularia triangularis (Slater, 1907)
SA: G 19143 (holotype).
P.D: Conularia triangularis Slater.
SB: Wenlock Beds (Silurian).
GL: Dudley, Worcestershire (England).
CDA: No determination.

Ctenoconularia hispida (Slater, 1907)
SA: G 10041 (holotype).
P.D: Conularia hispida Slater.
SB: Wenlock Beds (Silurian).
GL: Dudley, Worcestershire (England).
CDA: No determination.

SA: G 11796 (paratype).
P.D: Conularia hispida Slater.
SB: Wenlock (Silurian).
GL: Dudley, Worcestershire (England).
CDA: G. H. Piper Collection, 1898.

SA: G 46840 (paratype).
P.D: Conularia hispida Slater.
SB: Starfish Bed (Upper Ordovician).
GL: Thraive Glen, Girvan (Ayshire, Scotland).

SA: G 19129.
P.D: Conularia hispida Slater.
SB: Wenlock (Silurian).
GL: Dudley, Worcestershire (England).
CDA: John Gray Collection, 1861.

Genus Conularia Sinclair, 1943

Conularia linnarssoni (Salter, 1866)
SA: G 46005-G 46009.
P.D: Conularia linnarssoni Holm.
SB: Stönchar limestone (Middle Ordovician).
GL: Craighead, Girvan (Ayshire, Scotland).

SA: G 4663B-G 46639.
P.D: Conularia linnarssoni Holm.
SB: Cräighed Group (Upper Ordovician).
GL: Craighead, Girvan (Ayshire, Scotland).

SA: G 46630-G 46633, G 46635-G 46637.
P.D: Conularia linnarssoni Holm.
SB: Cräighed Group (Upper Ordovician).
GL: Bow Hill, Girvan (Ayshire, Scotland).

SA: G 46638-G 46655.
P.D: Conularia linnarssoni Holm.
SB: Balclatchie Group (Upper Ordovician).

SA: G 46845.
P.D: Conularia linnarssoni Holm.
SB: Starfish Bed (Upper Ordovician).
GL: Thraive Glen, Girvan (Ayshire, Scotland).

SA: PG 4217.
SB: Tremadocisiense (Lower Ordovician).
GL: Nanty Caios, Carmarthen (Wales).
CDA: M. C. Crosfield, 1937.

SA: PG 5112.
P.D: Conularia linnarssoni Holm.
SB: Middle Ordovician.
GL: Balclatchie, Girvan (Ayshire, Scotland).

Genus Metaconularia Bouck, 1939

Metaconularia elegans (Slater, 1907)
SA: G 17665 (holotype).
P.D: Conularia elegans Slater.
SB: M ississipian (Carboniferous).
GL: Farlow, Shropshire (England).
CDA: Thomas Baugh Collection, 1870.

SA: 97642.
P.D: Conularia elegans Slater.
SB: M ississipian (Carboniferous).
CDA: Thomas Baugh Collection, 1870.

Metaconularia fragilis (Barrande, 1867)
SA: G 4067.
P.D: Metaconularia fragilis Barrande.
SB: Keoneprus Limestone (Lower Devonian).
GL: Keoneprus (= Koneprus) (Czecho-Slovakia).
CDA: Dr. F. Fric, 1885.

SA: No sample abbreviation.
P.D: Metaconularia fragilis Barrande.
SB: Keoneprus Limestone (Lower Devonian).
GL: Keoneprus (= Koneprus) (Czech Republic).
CDA: No record.

Genus Metaconularia Foerster, 1926

Metaconularia anomala (Barrande, 1867)
SA: 80338 (three specimens), 80219k-l.
P.D: Conularia anomala Barrande.
SB: Etage D of Barrande (Ordovician).
GL: Veselá (= Wesela) (Czech Republic).
CDA: Dr. J. Barrande, 1856.

SA: G 1478 (three specimens).
P.D: Conularia anomala Barrande.
SB: Etage D2 of Barrande (Upper Ordovician).
GL: Drábov (Czech Republic).
CDA: B. Stürtz, 1884.

SA: G 10045.
P.D: Conularia anomala Barrande.
SB: Etage D of Barrande (Ordovician).
GL: Veselá (= Wesela) (Czech Republic).
CDA: F. H. Butler, 1889.

SA: 80215a-f.
P.D: Conularia rugosa Barrande.
SB: Etage D2 of Barrande (Upper Ordovician).
GL: Mt. Ded (= Mt. Drabov) (Czech Republic).
CDA: No record.

SA: 80219.
P.D: Conularia anomala Barrande.
SB: Etage D2 of Barrande (Upper Ordovician).
GL: Mt. Ded (= Mt. Drabov) (Czech Republic).
CDA: No record.

SA: 80219a-b (the same sample, positive and negative mold), 80219c (two samples), 80219d-j.
P.D: Conularia anomala Barrande.
SB: Etage D2 of Barrande (Upper Ordovician).
GL: Mt. Ded (= Mt. Drabov) (Czech Republic).
CDA: No record.

SA: 80386a-f, 80387a-h.
P.D: Conularia anomala Barrande.
SB: Etage D2 of Barrande (Upper Ordovician).
GL: Mt. Ded (= Mt. Drabov) (Czech Republic).
CDA: No record.

Metaconularia aspersa (Lindström, 1884)
SA: G 4603-G 4604. Described and illustrated by Slater (1907: 19-20, pl. 1: figs. 4c-7).
P.D: Metaconularia aspersa G. Lindström.
SB: Lower Ludlow (Silurian).
GL: Church Hill, Herefordshire (England).
CDA: J. E. Lee, 1885.

SA: G 3373. Described and illustrated by Slater (1907: 7-9, pl. 1: figs. 1-3).
P.D: Metaconularia aspersa G. Lindström.
SB: Lower Ludlow (Silurian).
GL: Church Hill, Herefordshire (England).
CDA: No record.

SA: G 12243.
P.D: Metaconularia aspersa G. Lindström.
SB: Lower Ludlow (Silurian).
GL: Church Hill, Herefordshire (England).
CDA: Dr. F. A. Bather, 1901.
SA: G 12576, G 12577 (two samples), G 12578 (two samples), G 12579.
PD: Metaconularia aspersa G. Lindström.
SB: Ludow (Silurian).
GL: Leintwardine, Herefordshire (England).
CDA: G. H. Merton Collection (Miss Merton), 1900.

SA: G 12238.
PD: Metaconularia aspersa G. Lindström.
SB: Lower Ludow (Silurian).
GL: Church Hill, Herefordshire (England).
CDA: F. H. Butler, 1911.

SA: G 12576, G 12577 (two samples), G 12578 (two samples).
PD: Metaconularia aspersa G. Lindström.
SB: Lower Ludow (Silurian).
GL: Church Hill, Herefordshire (England).
CDA: Ludlow Museum Collection, 1939.

SA: PG 4436-PG 4437.
PD: Metaconularia aspersa G. Lindström.
GL: Mr. Marston, no year recorded.
CDA: Ludlow Museum Collection, 1939.

SA: 38342 (two samples).
PD: Metaconularia aspersa G. Lindström.
SB: Lower Ludow (Silurian).
GL: Leintwardine, Herefordshire (England).

SA: 80222a-f.
PD: Conularia bohemica Barrande.
SB: Étage D of Barrande (Ordovician).
GL: Vrá (= Wra) (Czech Republic).
CDA: Dr. J. Barrande, 1856.

SA: 80221a-d.
PD: Conularia consobrina (Barrande, 1867).
SB: Church Hill, Herefordshire (England).
GL: Leintwardine, Herefordshire (England).
CDA: No record.

SA: 80217a, 80217c-d.
PD: Conularia bohemic Barrande.
SB: Étage D of Barrande (Ordovician).
GL: Mt. Ded (= Mt. Drabov) (Czech Republic).
CDA: DT. J., Barrande, 1856.

SA: 80217b.
PD: Conularia bohemic Barrande.
SB: Étage D of Barrande (Ordovician).
GL: Loděnice (= Lodenitz) (Czech Republic).
CDA: DT. J., Barrande, 1856.

SA: 80222a-f.
PD: Conularia consobrina Barrande.
SB: Étage D of Barrande (Ordovician).
GL: Loděnice (= Lodenitz) (Czech Republic).
CDA: No record.

SA: 80389a-d.
PD: Conularia bohemic Barrande.
SB: Étage D of Barrande (Ordovician).
GL: Czech Republic.
CDA: No record.

SA: 80390.
PD: Conularia bohemic Barrande.
SB: Étage D of Barrande (Ordovician).
GL: Vrá (= Wra) (Czech Republic).
CDA: No record.

SA: 80391a-c.
PD: Conularia bohemic Barrande.
SB: Étage D of Barrande (Ordovician).
GL: Czech Republic.
CDA: DT. J., Barrande, 1856.

SA: 80242a-c.
PD: Conularia modesta (Barrande, 1867).
SB: Châtillon de l'Ardèche (Upper Ordovician).
GL: M. Tet (= Mt. Drabov) (Czech Republic).
CDA: No record.

SA: 80222d.
PD: Conularia modesta (Barrande, 1867).
SB: Étage D of Barrande (Ordovician).
GL: Wintra, Trublin (= Trublín) (Czech Republic).
CDA: No record.

SA: 80222a.
PD: Conularia modesta (Barrande, 1867).
SB: Middle Ordovician.
GL: Wintra, Trublin (= Trublín) (Czech Republic).
CDA: Prof. Kloucek, 1912.

SA: G 46879 (syntype).
PD: Conularia punctata (Slater, 1907).
SB: Penkill Group (Llandovery, Silurian).
GL: Penkill, Girvan (Ayshire, Scotland).

SA: G 46880 (syntype).
PD: Conularia punctata (Slater, 1907).
SB: Penkill Group (Llandovery, Silurian).
GL: Penkill, Girvan (Ayshire, Scotland).

SA: G 46881 (syntype).
PD: Conularia punctata (Slater, 1907).
SB: Penkill Group (Llandovery, Silurian).
GL: Penkill, Girvan (Ayshire, Scotland).

SA: C 3408d.
PD: Conularia pyramidata (Hoeninghaus, 1832).
SB: Grés de May (Upper Ordovician).
GL: May-sur-Orne, Calvados (Normandie).
CDA: Dr. Ogier Ward Collection, 1869.

SA: C 3406.
PD: Conularia pyramidata (Hoeninghaus, 1832).
SB: Grés de May (Upper Ordovician).
GL: May-sur-Orne, Calvados (Normandie).
CDA: T. Tesson Collection, 1857.

SA: C 3407.
PD: Conularia pyramidata (Hoeninghaus, 1832).
SB: Grés de May (Upper Ordovician).
GL: May-sur-Orne, Calvados (Normandie).
CDA: S. P. Pratt, 1857.

SA: C 3408b-c.
PD: Conularia pyramidata (Hoeninghaus, 1832).
SB: Grés de May (Upper Ordovician).
GL: May-sur-Orne, Calvados (Normandie).
CDA: No record.

SA: G 4665-PG 4666.
PD: Conularia pyramidata (Hoeninghaus, 1832).
SB: Grés de May (Upper Ordovician).
GL: May-sur-Orne, Calvados (Normandie).

SA: No sample abbreviation.
PD: Conularia pyramidata.
SB: Ordovician.
GL: May-sur-Orne, Calvados (Normandie).
CDA: Museum national d'Histoire naturelle of Paris, no year.

SA: 15288, G 15294.
PD: Conularia sp.
SB: Budleigh Salterton Pebble Beds (Lower Triassic).
GL: Budleigh - Salterton, Devonshire (England).
CDA: W. Vicary Collection, 1903.

SA: PG 4465-PG 4466.
PD: Conularia pyramidata (Hoeninghaus, 1832).
SB: Grés de May (Upper Ordovician).
GL: May-sur-Orne, Calvados (Normandie).
CDA: No record.

SA: G 44672-G 44680, G 44688-G 44692, 46792-G 46809.
PD: Archaeoconularia slateri (Reed, 1933).
SB: Starfish Bed (Upper Ordovician).
GL: Thraive Glen, Girvan (Ayshire, Scotland).

SA: G 44672-G 44680, 44688-G 44692, 46792-G 46809.
PD: Archaeoconularia slateri (Reed, 1933).
SB: Starfish Bed (Upper Ordovician).
GL: Thraive Glen, Girvan (Ayshire, Scotland).

SA: G 46716-G 46722, G 46740-G 46749.
PD: Archaeoconularia slateri (Reed, 1933).
SB: Starfish Bed (Upper Ordovician).
GL: Thraive Glen, Girvan (Ayshire, Scotland).

SA: 250038.
PD: Archaeoconularia slateri Reed.
SB: Starfish Bed (Upper Ordovician).
GL: South Thraive Farm, Girvan (Ayshire, Scotland).

SA: G 44672-G 44680, G 44688-G 44692, 46792-G 46809.
PD: Archaeoconularia slateri (Reed, 1933).
SB: Starfish Bed (Upper Ordovician).
GL: Thraive Glen, Girvan (Ayshire, Scotland).

SA: G 46672-G 46680, G 46688-G 46692, 46792-G 46809.
PD: Archaeoconularia slateri (Reed, 1933).
SB: Starfish Bed (Upper Ordovician).
GL: Thraive Glen, Girvan (Ayshire, Scotland).

SA: G 46811.
PD: Conularia cf. punctata Slater.
SB: Starfish Bed (Upper Ordovician).
GL: Thraive Glen, Girvan (Ayshire, Scotland).
SA: G 46823-G 46824.
PD: Conularia.
SB: Starfish Bed (Upper Ordovician).
GL: Thraive Glen, Girvan (Ayrshire, Scotland).

SA: G 46825-G 46835.
PD: Conularia cf. punctata Slater.
SB: Starfish Bed (Upper Ordovician).
GL: Thraive Glen, Girvan (Ayrshire, Scotland).

SA: PG 4251.
PD: Conularia sp. cf. aequalis Lindström.
SB: Starfish Bed (Upper Ordovician).
GL: Thraive Glen, Girvan (Ayrshire, Scotland).
CDA: Mrs. Robert Gray Collection, 1937.

SA: PG 5113.
PD: Archaeoconularia slateri Reed.
SB: Starfish Bed (Upper Ordovician).
GL: No record.
CDA: No record.

Metacunarlia sowerbyi (Verneuil, 1845)

SA: G 6327 (two specimens). One of specimens described and illustrated by Slater (1907: 37-38, pl. 5: figs. 7a-b).
PD: Conularia sowerbyi de Verneuil.
SB: Wenlock (Silurian).
GL: Dudley, Worcestershire (England).
CDA: No record.

SA: G 64550.
PD: Conularia cancellata Sandberger.
SB: Silurian.
GL: Bidyot, Gotland (Sweden).
CDA: M. Lindström, 1865.

SA: G 62.
PD: Conularia sowerbyi de Verneuil.
SB: Wenlock (Silurian).
GL: Dudley, Worcestershire (England).
CDA: No record.

SA: G 460.
PD: Conularia sowerbyi de Verneuil.
SB: Wenlock (Silurian).
GL: Ledbury, Herefordshire (England).
CDA: No record.

SA: G 461, G 6274, G 9779, G 69779.
PD: Conularia sowerbyi de Verneuil.
SB: Wenlock (Silurian).
GL: Dudley, Worcestershire (England).
CDA: No record.

SA: G 6273.
PD: Conularia sowerbyi de Verneuil.
SB: Wenlock (Silurian).
GL: Malvern, Worcestershire (England).
CDA: No record.

SA: G 6275, G 11795 (two samples), G 12574.
PD: Conularia sowerbyi de Verneuil.
SB: Wenlock (Silurian).
GL: Dudley, Worcestershire (England).
CDA: No record.

SA: G 7374.
PD: Conularia quadrisulcata Sowerby.
SB: Wenlock (Silurian).
GL: Buildwas Bridge, Shropshire (England).

SA: G 10043.
PD: Conularia sowerbyi de Verneuil.
SB: Wenlock (Silurian).
GL: Dudley, Worcestershire (England).
CDA: No record.

SA: G 17500-G 17504.
PD: Conularia sowerbyi de Verneuil.
SB: Wenlock (Silurian).
GL: Cynwyd, Merionethshire (Wales).
CDA: No record.

SA: G 17505.
PD: Conularia sowerbyi de Verneuil.
SB: Wenlock (Silurian).
GL: Buildwas, Shropshire (England).
CDA: No record.

SA: G 19552.
PD: Conularia sp.
SB: Ordovician.
GL: Quebec.
CDA: No record.

SA: G 19639-G 19640.
PD: Conularia cancellata Sandberger.
SB: Chasmos maclurus limestone (Middle Ordovician).
GL: Rabek, Öland (Sweden).
CDA: Dr. F. A. Bathe, 1907.

SA: G 23715-G 23717, G 23725.
PD: Conularia sowerbyi de Verneuil.
SB: Trilobite zone (Upper Ordovician).
GL: Blairian, Merionethshire (Wales).
CDA: No record.

SA: G 23718-G 23720.
PD: Conularia sowerbyi de Verneuil.
SB: Trilobite zone (Upper Ordovician).
GL: Cynwyd, M. Merionethshire (Wales).
CDA: No record.

SA: G 23721-G 23722.
PD: Conularia sowerbyi de Verneuil.
SB: Orthoquina zone (Upper Ordovician).
GL: Ceregoedog, Denbighshire (Wales).
CDA: No record.

SA: G 23723.
PD: Conularia sowerbyi de Verneuil.
SB: Orthoquina zone (Upper Ordovician).
GL: Pont Hafodynyn, Denbighshire (Wales).
CDA: No record.

SA: G 24850-G 24851.
PD: Conularia quadrisulcata Sowerby.
SB: Niagara Group (Ludlow, Silurian).
GL: Grimby, Hamilton (Ontario).
CDA: G. J. Hinde Collection, 1918.

SA: G 32008.
PD: Conularia sowerbyi de Verneuil.
SB: Lower Ludlow (Silurian).
GL: M. octree, Shropshire (England).
CDA: No record.

SA: G 32009.
PD: Conularia sowerbyi de Verneuil.
SB: Wenlock (Silurian).
GL: T Orny River, Shropshire (England).
CDA: No record.

SA: G 43210.
PD: Conularia sowerbyi de Verneuil.
SB: Wenlock (Silurian).
GL: Shropshire (England).
CDA: No record.

SA: G 43237.
PD: Conularia sowerbyi de Verneuil.
SB: Upper Ludlow (Silurian).
CDA: No record.

SA: PG 4318.
PD: Conularia quadrissulcata Sowerby.
SB: Niagara (Rochester) Shale (Ludlow, Silurian).
GL: Lockport (New York).

SA: PG 4428. Described and illustrated by La Touche (1884, p. 62, pl. 7: fig. 152).
PD: Conularia sowerbyi Defrance.
SB: Pentamerus sandstone (Landovery, Silurian).
CDA: Ludlow Museum Collection, 1939.

SA: PG 4429.
PD: Conularia sowerbyi Defrance.
SB: Upper Ludlow (Silurian).
GL: Sheldenham, Shropshire (England).
CDA: No record.

SA: PG 4548.
PD: Conularia sowerbyi Defrance.
SB: Acon Scott Beds (Upper Ordovician).
GL: Gretton, Northamptonshire (England).
CDA: No record.

SA: No sample abbreviation for three specimens.
PD: Conularia sowerbyi Defrance.
SB: Wenlock (Silurian).
GL: Dudley, Worcestershire (England).
CDA: No record.

SA: No sample abbreviation.
PD: Conularia sowerbyi Defrance.
SB: ? Wenlock (Silurian).
CDA: No record.

SA: No sample abbreviation.
PD: Conularia sowerbyi Defrance.
SB: Silurian.
GL: No record.
CDA: No record.

Metacunarlia cf. sowerbyi (Verneuil, 1845)

SA: PG 4452.
PD: Conularia cf. sowerbyi Slater.
SB: Upper Ordovician.
GL: Gretton, Northamptonshire (England).
CDA: No record.

SA: No sample abbreviation.
PD: Conularia.
SB: Ordovician.
GL: Hovedön, Oslo (Norway).
CDA: No record.

Metacunarlia vesicularis (Slater, 1907)

SA: 48700.
PD: Conularia vesicularis (Slater).
SB: Bala (Upper Ordovician).
GL: Bwlch-y-Gasey, Merionethshire (Wales).
CDA: No record.
Genus Paraconularia Sinclair, 1940

Paraconularia acuta (Roemer, 1843)

SA: G 19558.
PD: Conularia acuta Roemer.
SB: Ibergerkalk (Upper Devonian).
GL: Grund, NW Harz (Germany).
CDA: No record.

Paraconularia acutilirata (Fletcher, 1938)

SA: G 17336.
PD: Conularia inornata J. D. Dana.
SB: Permo-Carboniferous.
GL: New South Wales (Australia).
CDA: No record.

Paraconularia africana (Sharpe, 1856)

SA: PG 4278-PG 4279 (syntypes).
PD: Conularia africana Sharpe.
SB: Botkveil Beds (Lower Devonian).
GL: Cedarberg (South Africa).
CDA: Geological Society, 1911.

SA: 18 (four samples).
PD: Conularia.
SB: No record.
GL: No record.
CDA: No record.

SA: 19 (four samples).
PD: Conularia.
SB: No record.
GL: No record.
CDA: No record.

SA: 733 (two samples), T73.
PD: Conularia africana.
SB: Botkveil Beds (Lower Devonian).
GL: Hex River (South Africa).
CDA: No record.

SA: PG 4280, PG 4282-PG 4286.
PD: Conularia.
SB: Botkveil Beds (Lower Devonian).
GL: Cedarberg (South Africa).

SA: G 19556, PG 4281.
PD: Conularia sp.
SB: Botkveil Beds (Lower Devonian).
GL: Cedarberg (South Africa).
CDA: No record.

SA: G 19599, G 49510-G 49511.
PD: Conularia complanata Slater.
SB: Mississippian (Carboniferous).
CDA: No record.

SA: G 409.
PD: Conularia complanata Slater.
SB: Mississippian (Carboniferous).
GL: Oretong, Shropshire (England).
CDA: Thomas Baugh Collection, 1870.

SA: G 19130.
PD: Conularia complanata Slater.
SB: Mississippian (Carboniferous).
GL: Oretong, Shropshire (England).
CDA: J. Tennant, 1882.

SA: G 12435.
PD: Conularia complanata Slater.
SB: Mississippian (Carboniferous).
GL: Oretong, Shropshire (England).
CDA: No record.

SA: G 19509.
PD: Conularia complanata Slater.
SB: Mississippian (Carboniferous).
GL: Oretong, Shropshire (England).
CDA: J. T. Tenr, 1882.

SA: G 12435.
PD: Conularia complanata Slater.
SB: Mississippian (Carboniferous).
GL: Oretong, Shropshire (England).
CDA: No record.

SA: G 49039.
PD: Conularia complanata Slater.
SB: Mississippian (Carboniferous).
GL: Rodder, Lancashire (England).
CDA: Rev. Father S. J. Pollen, 1893.

Paraconularia crawfordsvillensis (Owen, 1862)

SA: G 36.
PD: Conularia crawfordsvillensis Owen.
SB: Keokuk Group (Mississippian, Carboniferous).
GL: Crawfordsville (Indiana).
CDA: No record.
Paraconularia crustula (White, 1880)
SA: G 46634.
PD: Conularia.
SB: Bâclatriche Group (Upper Ordovician).
GL: Dow Hill, Girvan (Ayrshire, Scotland).

Paraconularia crustula (White, 1880)
SA: R 50244.
PD: Conularia crustula.
SB: Wewoka Formation (Pennsylvanian, Carboniferous).
GL: Holdenville (Oklahoma).

Paraconularia derwentensis (CDA: P. E. Negus, 1978.)
SB: Wewoka Formation (Pennsylvanian, Carboniferous)
SA: G 46634.
PD: Conularia tenuis var. muculosa Slater
SB: Carboniferous (Mississippian, Carboniferous).
GL: Eskdale, Dumfriesshire (Scotland).
CDA: No record.

Paraconularia missouriensis (Swallow, 1860)
SB: Calciferous Sandstone series (Mississippian, Carboniferous).
PD: Conularia missouriensis
SA: G 24838-G 24839.
CDA: Steven, no year recorded.

Paraconularia irregularis (De Koninck, 1882)
SB: Coal Measures (Pennsylvanian, Carboniferous).
PD: Conularia irregularis
SA: 38348.
CDA: T. Stock, 1885.

Paraconularia quadrisulcata (Sowerby, 1844)
SB: Coal Measures (Pennsylvanian, Carboniferous).
PD: Conularia quadrisulcata
SA: 43843.
CDA: No record.

Paraconularia tenuis (Sowerby, 1862)
SB: Zechstein Formation (Lopingiense, Permian).
PD: Conularia tenuis
SA: 6697-G 6698, G 364, G 4014 (two samples), G 6697-G 6698.
CDA: No record.

Paraconularia maculosa (Slater, 1907)
SA: G 17663 (synotype).
PD: Conularia tenuis var. maculosa Slater
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.

Paraconularia quadrisulcata (Sowerby, 1862)
SB: Carboniferous (Mississippian, Carboniferous).
PD: Conularia quadrisulcata
SA: G 19134 (synotype).
CDA: No record.

Paraconularia missouriensis (Swallow, 1860)
SB: Coal Measures (Pennsylvanian, Carboniferous).
PD: Conularia missouriensis
SA: G 18897.
CDA: No record.

Paraconularia maculosa (Slater, 1907)
SB: Coal Measures (Pennsylvanian, Carboniferous).
PD: Conularia tenuis var. maculosa Slater
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.

Paraconularia quadrisulcata (Sowerby, 1862)
SB: Carboniferous (Mississippian, Carboniferous).
PD: Conularia quadrisulcata
SA: G 24838-G 24839.
CDA: Steven, no year recorded.

Paraconularia irregularis (De Koninck, 1842-1844)
SB: Coal Measures (Pennsylvanian, Carboniferous).
PD: Conularia irregularis
SA: 43843.
CDA: T. Stock, 1885.

Paraconularia tenuis (Sowerby, 1862)
SB: Zechstein Formation (Lopingiense, Permian).
PD: Conularia tenuis
SA: 6697-G 6698, G 364, G 4014 (two samples), G 6697-G 6698.
CDA: No record.

Paraconularia maculosa (Slater, 1907)
SB: Coal Measures (Pennsylvanian, Carboniferous).
PD: Conularia tenuis var. maculosa Slater
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.
SA: G 19136-G 19139.
PD: Conularia quadrisulcata Sowerby.
SB: Carboniferous.
GL: Reino Unido.
CDA: Caroline Birley, 1907.

SA: G 20659 (two samples).
PD: Conularia quadrisulcata Sowerby.
SB: Mississippian (Carboniferous).
GL: Eccup, Yorkshire (England).

SA: G 24051.
PD: Conularia quadrisulcata Sowerby.
SB: Mississippian (Carboniferous).
GL: Codden Hill, Devonshire (England).

PD: Conularia quadrisulcata Sowerby.
SB: Carboniferous).

SA: G 26797-G 26798.
CDA: J. G. Hamling, no year recorded.
GL: Codden Hill, Devonshire (England).
SB: Lower Culm (Mississippian, Carboniferous).

SA: G 40810.
CDA: Caroline Birley, 1907.
GL: Eccup, Yorkshire (England).
SB: Mississippian (Carboniferous).

SA: G 41200.
PD: Conularia.
SB: Zone d2 Hammad (Mississippian, Carboniferous).
GL: Settle, Yorkshire (England).
CDA: Dr. Stanley Smith, 1921.

SA: G 41207-G 41209.
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: Wheeler Hind Collection, 1921.

SA: G 42081 (four samples).
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Ribblehead, Yorkshire (England).
CDA: T. Roscoe Rede Stebbing, 1924.

SA: G 42400.
PD: Conularia.
SB: Zone d2 Hammad (Mississippian, Carboniferous).
GL: Settle, Yorkshire (England).
CDA: Wheeler Hind Collection, 1921.

SA: G 42960.
PD: Conularia quadrisulcata Sowerby.
SB: Thick beds (Mississippian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: Wheeler Hind Collection, 1921.

SA: G 43843 (synotype).
PD: Conularia quadrisulcata Sowerby.
SB: Transition-Limestone Millstone Grit Series (Pennsylvanian, Carboniferous).
GL: Keswick, Westmorland (England).
CDA: Sowerby Collection, 1860.

SA: G 4962.
PD: Conularia subtilis Salter.
SB: Upper Ludlow (Silurian).
GL: Usk, Monmouthshire (England).
CDA: J. E. Lee, 1885.

SA: G 19174.
PD: Conularia quadrisulcata Sowerby.
SB: Carboniferous).

SA: G 26797-G 26798.
PD: Conularia quadrisulcata Sowerby.
SB: Mississippian (Carboniferous).
GL: Codden Hill, Devonshire (England).

PD: Conularia quadrisulcata Sowerby.
SB: Mississippian (Carboniferous).
GL: Coalbrookdale, Shropshire (England).

SA: G 4602.
PD: Conularia subtilis Salter.
SB: Upper Ludlow (Silurian).
GL: Usk, Monmouthshire (England).
CDA: J. E. Lee, 1885.

SA: G 17661-G 17662 (paratypes).
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.

SA: G 17664 (paratype).
PD: Conularia quadrisulcata Sowerby.
SB: Carboniferous).

SA: G 17664 (paratype).
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.

SA: G 17670 (31 samples) (paratypes).
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.

SA: G 17670 (31 samples) (paratypes).
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.

SA: G 17670 (31 samples) (paratypes).
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.

SA: G 17670 (31 samples) (paratypes).
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.

SA: G 17670 (31 samples) (paratypes).
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.

SA: G 17670 (31 samples) (paratypes).
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.

SA: G 17670 (31 samples) (paratypes).
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.

SA: G 17670 (31 samples) (paratypes).
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.

SA: G 17670 (31 samples) (paratypes).
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.

SA: G 17670 (31 samples) (paratypes).
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.

SA: G 17670 (31 samples) (paratypes).
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.

SA: G 17670 (31 samples) (paratypes).
PD: Conularia quadrisulcata Sowerby.
SB: Coal Measures (Pennsylvanian, Carboniferous).
GL: Coalbrookdale, Shropshire (England).
CDA: No record.
Genus Pseudoconularia Boucek, 1939

Pseudoconularia grandissima (Barrande, 1867)
SA: 19.
PD: No determination.
SB: No record.
GL: No record.
CDA: No record.
SA: 80213 (four samples), 80213a-c, 80213e.
PD: Conularia grandis Barrande.
SB: Étage D2 of Barrande (Upper Ordovician).
GL: Vrá (=Wra) and Zahorany (=Zahorzan) (Czech Republic).
CDA: Dr. J. Barrande, 1856.
SA: G 19555.
PD: Conularia grandis Barrande.
SB: Étage D of Barrande (Ordovician).
GL: Czech Republic.
CDA: Dr. J. Barrande, 1856.
SA: H 5477.
PD: Conularia grandissima Barrande.
SB: Upper Hope Shales (Middle Ordovician).
GL: Shelve, Shropshire (England).
CDA: Whittard Collection, noyear recorded.
SA: PG 4253.
PD: Conularia grandis Barrande.
SB: Zahorany Beds (Upper Ordovician).
GL: Nucice (=Vinice) (Czech Republic).
SA: No sample abbreviation.
PD: Conularia.
SB: Silurian.
GL: No record.
CDA: No record.

Pseudoconularia magnifica (Spencer, 1879)
SA: G 14827.
PD: Conularia magnifica Spencer.
SB: Niagara Limestone (Ludlow, Silurian).
GL: Hamilton (Ontario).
CDA: C. C. Grant Collection, 1904.

Pseudoconularia megista Lamont, 1946
SA: G 23287-G 23288, G 23306.
PD: Pseudoconularia megista / currieae.
SB: Starfish Bed (Upper Ordovician).
GL: Thrave Glen, Girvan (Ayrshire, Scotland).
CDA: W. McPherson Collection, 1913-1914.

Pseudoconularia nobilis (Barrande, 1867)
SA: G 46839, G 46851.
PD: Conularia cf. curta Holm.
SB: Starfish Bed (Upper Ordovician).
GL: Thrave Glen, Girvan (Ayrshire, Scotland).
SA: 80218.
PD: Conularia nobilis.
SB: Étage D2 of Barrande (Upper Ordovician).
GL: Zahorany (=Zahorzan) (Czech Republic).
CDA: No record.

Pseudoconularia sp.
SA: No sample abbreviation.
PD: Conularia.
SB: Devonian.
CDA: Museum of Practical Geology, 1880.

Genus Incertae sedis

Incertaine sedis
SA: PG 5114-PG 5115.
PD: Zitteloceras costatum Teichert.
SB: Starfish Bed (Upper Ordovician).
GL: Girvan, Ayrshire (Scotland).
Introduction

The British Antarctic Survey (BAS) fossil collections form a unique taxonomic resource for scientific research. As a wholly-owned Natural Environment Research Council (NERC) establishment, BAS has a duty of care so that future use of the material is not compromised (NERC, 2007). The specimens need to be curated in such a way that advances in analytical techniques can be accommodated with existing specimens (Howe et al. 2004). Since no one can anticipate exactly what may be required in the future, it is important to maintain specimens in as near original condition as possible. Any conservation or preparation work carried out must be of limited impact or of a reversible nature (Brunton et al. 1985). It is essential that the documentation accompanying each specimen is as detailed as possible.

In the present economic climate, requests for funding must be fully justified. It is therefore important that unique collections such as those at BAS are recognised by management and research scientists as the valuable resource they are. Such realisation can only be brought about by demonstrating the usefulness of the collections through detailed documentation, not only of the specimens but also of the use made of the collections by researchers and others. Data on specimens, catalogues of collections, directories of publications can all be listed in interactive databases whilst registers of loans and of visitors can effectively demonstrate collection use. Such datasets can be powerful management tools that benefit users by providing easy and clear access to information. They also benefit the collections by enabling controlled curation and highlighting areas where improvements can or should be made.

In the case of the BAS collections, it makes good sense to be aware of the possibilities available from re-use of previously collected specimens. It may not always be possible to travel to Antarctica to collect new material and therefore it is worth maintaining specimens currently in the collections since they could be all the material that is available to science if political or environmental conditions change. Dialogue between management, researchers and technical support staff can ensure that the fossil collections receive the care and attention they need to continue to provide a valuable scientific resource into the future (Blagbrough 2008).

Acquisition of specimens

Any expedition to collect fossils in Antarctica is made under license as part of a science programme and as such will have a well-planned strategy for collection. The scientists record location data using sophisticated GPS systems and also compile field notebooks showing this and other contextual data. Each locality is issued with a unique identity and as there can be several hundred specimens collected at a given locality, each is given a unique identifier. The specimens are packed, often wrapped in newspaper, into wooden boxes and sent back to the UK by ship.
Antarctica is generally a very cold place and, although temperature fluctuations do mean some areas are snow-free during the summer months, the specimens are likely to be packed if not actually frozen then at the very least, wet and even with a snow component in the boxes if conditions are unfavourable. Shipping the specimens back to the UK means passing through the warmer and more humid tropics and by the time the specimens reach this country any that were frozen will have fully thawed and may have begun to dry out or even break up. On arrival at BAS, the boxes of specimens are stored in the logistics yard and inclement British weather can inflict more damage either by water ingress or by baking.

When the specimens are unpacked, the rocks are allowed to dry out as necessary. The sample number is checked and made more permanent by use of emulsion paint and India-ink pens. The fossils are then put into plastic trays and either added to the reserve collection or taken for immediate study. All of the above tasks are undertaken by the collectors themselves, with little input from the technical support staff.

The technical support staff attached to the geological department, whilst having a geological background, are not specifically employed as curators. This should not be an issue since, as Doughty (1981) states, collections in the care of geologists fare better than those in the hands of non-specialists. It does mean that due to other duties only a very small proportion of time can be given to collection management and care. However, the technicians' other activities ensure that they access the reserve stores regularly and so are in a good position to notice and report any developing problems.

If the specimens are going straight into the reserve collection, the technicians issue box numbers and log the specimens in the storage database, which also locates the box within a storage-bay area. Most recently, fossil collections have been made as part of AFI (Antarctic Funding Initiative) projects supported by BAS (see the web site: http://www.antarctica.ac.uk/afi/ for details) through various university departments. The result of this is that the specimens are removed to those establishments for study and information may not be available to the technicians as to what has been taken off-site. There is an understanding that specimens will be returned to BAS when the project is completed, preferably with a copy of the field notes.

Once the fossil specimens are returned to BAS, they are allocated box and bay numbers and logged on the database. Most of the large volumes of fossils relate to PhD work, which is not currently regarded as cited or figured material so the specimens remain in the reserve collection. When a paper is published, the fossils are recovered from the reserve store and incorporated into the Type & Figured collection, sometimes with photographs.

It has been recognised by others (Howe et al. 2008) that the work of cataloguing collections and particularly taxonomic specimens listed in publications is an arduous task not least because there is no universally-recognised system of nomenclature used. Online databases are becoming important to the scientific community (Allmon 2004) for research purposes but the digital curation process needed to make them accessible is often neglected through lack of technical expertise, funding or managerial support.

Storage of fossils

The Rock Store (Figure1) is a large storage room with two banks of movable racking as well as fixed racks on the walls and a long bench with shelves beneath. The largest part of this area is taken up with the archived rock collection, followed in descending volume by the reserve fossils, the processed rock material and the working rock collection.

Once the fossil specimens are returned to BAS, they are allocated box and bay numbers and logged on the database. Most of the large volumes of fossils relate to PhD work, which is not currently regarded as cited or figured material so the specimens remain in the reserve collection. When a paper is published, the fossils are recovered from the reserve store and incorporated into the Type & Figured collection, sometimes with photographs.

It has been recognised by others (Howe et al. 2008) that the work of cataloguing collections and particularly taxonomic specimens listed in publications is an arduous task not least because there is no universally-recognised system of nomenclature used. Online databases are becoming important to the scientific community (Allmon 2004) for research purposes but the digital curation process needed to make them accessible is often neglected through lack of technical expertise, funding or managerial support.

Storage of fossils

The Rock Store (Figure1) is a large storage room with two banks of movable racking as well as fixed racks on the walls and a long bench with shelves beneath. The largest part of this area is taken up with the archived rock collection, followed in descending volume by the reserve fossils, the processed rock material and the working rock collection.

Figure 1: Part of the reserve fossil collection in the Rock Store at the British Antarctic Survey, Cambridge.

22
The reserve fossil collection includes over 55,000 fossil specimens which are held in plastic trays stacked on the movable racking and beneath the bench. Specimens are often stacked within the trays and may still be wrapped in newspaper. Weight of material in the trays varies with the mineralisation of the fossils and where this exceeds the strength of the trays the bases can become cracked and broken. The top of the racking is close to the ceiling and access to material stored there is often difficult and potentially hazardous to users.

There are two doors - one gives onto the logistics yard and one onto the interior of the building. There is a bank of windows overlooking the yard, which has racking in front and there is no air-conditioning. This area is where all specimens of rocks and fossils are brought into the geology department. It is also used to store various bulk supplies and equipment as well as being the area utilised for packing field equipment before sending it South.

Housed in two west-facing laboratories on the ground floor of the building, the Type & Figured collection of approximately 2,500 specimens is stored in a series of traditional mahogany cabinets with unlined, wooden drawers (Figure 2) that were originally obtained from the Natural History Museum, London.

Specimens are kept in cardboard trays and are generally single stacked in the drawers. There are benches below the windows of the laboratories and against the back walls, which have shelving beneath and are used to store some reserve collection material in plastic trays. Some large Type & Figured material is also stored in these trays. Researchers needing to inspect the collections are accommodated in one of the palaeontology labs, which is also where fossil displays are set up as needed for other visitors.

Appendix 1 summarises the storage facilities both at the Cambridge site and at an off-site storage unit used mainly for non-fossil specimens. It shows the packing used and the environmental monitoring systems in place (Blagbrough and Tate 2008).

Specimens in the cabinets are generally dust-free but those kept on or beneath the benches are often in a filthy condition and need to be cleaned before they can be used. Some of the oversize material is extremely heavy, causing the plastic trays to warp and split under their weight. This is clearly not an ideal situation as it could cause damage to the specimens and is a danger to users.

Use of the fossil collections

Researchers wishing to visit the British Antarctic Survey fossil collections will generally make an initial approach through an appropriate scientific contact who will then liaise with the technicians regarding dates and times of the proposed visit, as well as indicating what material will be required. Where possible, specimens are retrieved from store in advance. If items are taken from the Type & Figured collection, an information card is left to show where the specimen has gone.

Specimens to be sampled or removed from the premises for further analysis require authorisation from a senior scientist. Type & Figured specimens may not be subjected to any destructive sampling; all reserve material can be drilled or processed, with the correct permissions. A loan form is completed with details of the treatment permitted so that there can be no argument about destruction or sub-sampling of the specimens at a later date. A paper copy of the form is signed and given to the borrower for their reference whilst a photocopy is held on file at BAS. Specimens are then bubble-wrapped and boxed for transport.

Loans are logged on an Access™ database which allows the records to be searched. Storage location data are recorded on the loan forms for use when the specimens are returned. Loans are generally for an initial period of six months or less and may be renewed by written request; the database generates automatic emails to the technical staff as a loan falls due so that follow-ups can be made.

Figure 2. One of the Type & Figured fossil collection cabinets showing labelled specimens in cardboard trays in the wooden drawers.
When specimens are returned to the British Antarctic Survey at the end of the loan period, they are unpacked and checked for damage. Notes are made of any problems and the specimens are put back in their storage locations. The loan is then signed off on the database and the paper copy is crossed out and filed in the records.

Occasionally, other non-research visitors come to see the collections. VIPs, small school parties, student and teacher groups and film crews have all been accommodated on tours of the facilities. When the need arises, fossil specimens are displayed on the window bench in one of the palaeontology laboratories or as table-top presentations in one of the office areas. As this requires repeated handling of potentially fragile specimens, care must be taken to ensure that damage is kept to a minimum. This is not an ideal situation but current circumstances do not allow for any alternative if the specimens are to be utilised for display purposes.

In May 2009, the display specimens as well as some Type & Figured material were taken for exhibition (Figure 3) at the Lyme Regis Fossil Festival 2009 - Evolution Rocks! There were several logistical problems to be overcome, not least the security of the Type & Figured material. Lockable display cases were obtained for the smaller or more valuable items and it is planned to incorporate their use in a more permanent display area at BAS.

Environmental monitoring

Six Hoboware™ data loggers are in place in the collections storage areas. These were purchased as a research project to review and record the environmental conditions faced by specimens in the various storage areas. Reports are made bi-monthly to the senior management. Appendix 2 shows a plot of readings obtained during the period April 2008 - June 2008 and includes both temperature readings and humidity.

One data logger is situated in the reserve fossil collection bays in the Rock Store and two in each of the palaeontology laboratories, positioned on the back walls and in the cabinets. The final data logger was kept in the thin-section storage cabinets. This logger has recently been moved to the Rock Store to check conditions in the covered boxes there. The positions were chosen to give an indication of the amount of environmental buffering offered by the cabinets (Blagbrough and Tate 2008) and to monitor conditions.

As can be seen in Appendix 2, the temperature and RH% vary considerably in both of the open rooms and the Rock Store but although the temperature continues to vary in the cabinets, the RH% is effectively buffered to give a reading of 43.5% ± 2%. The East Midlands Museum Service provides a range of acceptable relative humidity percentages on its website at http://www.emms.org.uk/Preventive%20Conservation.htm which suggests that this is at the bottom of the range appropriate for general geological samples. It is recommended that shale, which is one of the most common fossil-bearing rock types in Antarctica, should be kept at a relative humidity of no less than 40%, whereas fossils containing pyrite should be kept around RH 30% and at no more that 50%. The BAS Type & Figured storage cabinets are maintained, by accident rather than design, at a level that is suitable for the majority of the fossil specimens therein. Unfortunately this is not the case outside of the cabinets where the RH% varies from approximately 30% to 60% and gives some cause for concern.

Since their collection and removal from Antarctic conditions, the fossils have been subjected to significant environmental fluctuations. In the most extreme cases, these
fluctuations can reduce the specimen to a mush of silt (McLean 1999). Moisture content in the specimens is often high at first and this can cause salt-leeching and de-lamination in susceptible materials as the fossils and their matrix dry out. The increased humidity from damp wrappings in the boxes encourages mould growth (Frost 1999; Brysbaert 2006), which can be a hazard to users. The findings from environmental monitoring over the past year show that to avoid further stress on the fossils, all specimens should be kept in the cabinets. This is not practicable at the present time due to financial and spatial constraints. Only the Type & Figured collection has been prioritised to receive cabinet storage.

Temperature and humidity variations are only two of the environmental factors that can affect the fossil collections at BAS. As was detailed earlier, the fossils in the reserve collection are stored in plastic trays, sometimes still with their newspaper wrappings. The trays are generally stacked up to four high on a shelf. Those stacked on top of the racking usually have lids on the top tray but there is no room to lid the trays in the shelves. A past problem associated with the un-lidded trays has been nesting rodents. These use the paper wrappings as nesting material and can destroy specimens by their actions. Pest traps have been installed and there does not appear to be a continuing problem.

A more frequently noticed problem is dust. The Rock Store is a dusty environment and, over time, particulates collect on the specimens (Moore 2006; Brysbaert 2006) obscuring their detail and potentially causing the fossil matrix to deteriorate. Scrubbing in water to remove the dust (the method employed on hard rock specimens) is inappropriate as is brushing. Either method can cause damage to the fossil specimen and should be avoided. Blowing gently with compressed air is perhaps the most appropriate means of removing the dust but it would be better if the trays were lidded and the specimens protected from this contaminant.

Procedures and documentation

In terms of documentation of the fossil collections, there are several systems dependent upon the status of the material. Field notebooks are retained by the collectors for their own working reference. On departure or retirement from BAS, the notebooks are passed to the central archives for digitisation and storage. Station and specimen records are held by the geological department in a series of registers that are available to all staff. These are also undergoing digitisation.

The Archives Service holds most of the historical documentary information concerning work in and around Antarctica and offers a "by appointment only" service to public researchers. The Archives hold data for all the science disciplines as well as logistics information concerning the support of that science in Antarctica. Further information about the service can be found on the website at http://www.antarctica.ac.uk/about_bas/our_organisation/eid/archives.php

Internal databases hold information on stations, specimens, storage locations, loans, crushed-rock preparations and thin-sections. These are searchable and in some instances linked, providing a valuable dataset of information. Preparation and thin-section data is also maintained on a card index held by the technical staff. The British Antarctic Survey fossils web site http://www.antarctica.ac.uk/bas_research/data/access/fossildatabase provides a searchable, public-access database for the Type & Figured collection. It holds photographic images of many of the specimens as well as listing citations. The website gives such data on the individual specimens as the collection locality, the collector and, where available, the identity of the specimen down to genus level. There is an email address connected to the site which is reviewed regularly by the technical staff and any enquiries are dealt with appropriately. New citations are being added as they are published and photographs are incorporated where possible. It is intended to eventually have all specimens, both Type & Figured and reserve, photographed for inclusion on the website. Thin-sections and micro-palaeontological slides are also being included in this process, with material being scanned so that images are available for research.

Conclusion

The fossil collections at the British Antarctic Survey are held for the purpose of scientific research but are not subjected to the intensity of curatorial focus that a museum collection would be. This is not an ideal situation since, although documentally well provenanced, the collections in their current state are potentially physically inadequate for future use. It needs to be appreciated by management as well as technicians and users that, without proper care, the specimens could become scientifically un-usable due to contamination and neglect. Considering how remote and hostile an environment the Antarctic is, it seems irrational that the efforts put into collecting the fossils are not matched by commensurate efforts for their care once they are returned to the UK.
Acknowledgements

I would like to thank my colleagues at the British Antarctic Survey, in particular Dr. Alistair Crame; Alex Tate and Huw Griffiths for their encouragement, guidance and support in preparing this work.

References

Appendix 1. A breakdown of the geological storage facilities both on- and off-site at the British Antarctic Survey (Blagbrough and Tate 2008).
Appendix 2. Temperature and RH % graphs for the period April 2008 - June 2008 in the specimen storage areas at the British Antarctic Survey. Note the extent of RH % buffering provided by the cabinets - logger 1 and logger 4 (the extra numbers shown are cabinet and shelf identifiers).
ACID DIGESTION OF SILICIFIED SHELLS

by Christian Baars

Many fossils can be extracted from their host rock by using acid digestion. Whether this technique is suitable depends upon the mode of preservation. Very good results can be achieved for silicified fossils within a carbonate-rich host rock. However, incomplete silicification may lead to partial loss of fossils in the laboratory. Therefore, prior to commencing acid treatment it is helpful to have some knowledge of the taphonomy of the sample and its ambient depositional environment, as there are important geological factors that have a significant influence on the preparation process.

C. Baars, Technical Research Officer, Department of Geology, National Museum Wales, Cathays Park, Cardiff CF10 3NP, Wales, U.K. e-mail: christian.baars@museumwales.ac.uk. Received 19th May 2009.

Introduction

The effect of poor preservation on taxonomic research and museum collections is hardly mentioned in the literature. While there are several studies relating the taphonomy of silicified fossils to the (pre-) diagenetic environment (for example, Boyd and Newell 1972, Wilson 1966) and much discussion has focussed on the strength and type of acid used in the recovery process (for example, Bittner and Millar-Campbell 1984 and references therein, Jeppson et al. 1985), the important role of taphonomy on the silicification process and subsequent recovery of fossils in the laboratory is poorly researched. Rarely - if ever - are comparisons made of the state of preservation pre and post acid digestion. Popov et al. (2007) discussed some of the problems caused by mode of preservation when studying the ontogeny of silicified brachiopods, which requires exceptional preservation and preparation. Hypothetically, even exquisitely silicified specimens, following acid digestion, may not be representative of what was actually contained in the rock matrix prior to preparation. Therefore, the question arose: does acid digestion produce specimens that are truly representative of the original material?

Acid digestion is a technique routinely used at National Museum Wales as part of specimen preparation. In particular, silicified shells, for example brachiopods and bivalves, are being extracted from a calcareous matrix using dilute (5 - 10 %) acetic acid. Preparation is mainly for research, which requires both very good preservation and careful preparation of specimens.

For the purposes of research it is implicitly assumed that acid preparation does not alter the shell structure, if silicification is complete. If shells are obviously damaged following acid digestion it is assumed that silicification was incomplete. If, at first glance, shells appear to be in good condition following acid digestion, the assumption is that preservation is good enough for research purposes.

In all likelihood, if visual inspection of a specimen prepared using acid by an experienced researcher results in said researcher being satisfied with the outcome, all morphological features are present and the specimen can be classed as completely silicified for the purposes of morphological and taxonomic research. What may be overlooked at a visual inspection are microscopic changes within the shell, which may result in structural research being difficult or, at worst, impossible. And once a sample has been committed to the acid bath it is too late to recognise that valuable information has been lost as a result of incomplete silicification and hasty preparation.

In an attempt to consider the potential changes to silicified material during acid digestion, a small study using a limited number of specimens was undertaken. Samples of early Jurassic silicified Gryphaea arcuata were analysed and examined pre and post treatment with acetic acid.

Methods

Samples of Lower Jurassic (Blue Lias) micritic limestone rocks containing Gryphaea arcuata Lamarck were collected from a new road cutting at
Southerndown (SS 885 731), Vale of Glamorgan, South Wales. Small samples were taken of fresh, unprepared shell. Whole rocks were then immersed in buckets with 10% acetic acid. After a period of 2 weeks, the rocks were thoroughly washed of all acid residues before small shell samples were taken. Subsequently, the rocks were immersed again in 10% acetic acid and digested until the shells were completely free of all rock matrix. A gain, the shells were thoroughly washed and small shell samples taken.

The specimens were hollow following acid digestion - only the most exterior shell layers were preserved as silica. As a consequence, the shells were quite fragile and had to be consolidated (using dilute Paraloid/B72) prior to handling.

Two shell samples each of pre, during and post digestion were analysed for their chemical composition using the ED analyser on a CamScan Maxim scanning electron microscope, and for mineralogy using a PANalytical X Pert PRO XRD analyser. Thin sections were also prepared of untreated samples and examined using a Leitz Ortholux polarizing petrographic microscope.

Results

The untreated shell samples were composed of quartz with traces of calcite, minor constituents containing (generally <3%) of aluminium, iron, magnesium, potassium, calcium, titanium and copper. The shells were dotted with many (c. 200 per mm²) small (largest diameter: 10 mm) spots of heavy element accumulations; these were mainly made up of copper with some iron.

The shell samples treated for 2 weeks had markedly less spots of heavy elements; these consisted of iron. No trace elements were detected in the shells analysed.

Shells following completed digestion were homogeneously composed of quartz, with very minor traces of calcite. No heavy elements were detected.

The relative silica proportion increased from an average of 16% (to 23%) to 47% between the pre and post digestion samples, with other elements decreasing rapidly during the first 2 weeks of acid treatment.

Analysis of thin sections of untreated specimens revealed that silica replacement of the shells was incomplete, and a large proportion of the inner shell layers was preserved as calcite. This calcite was dissolved by the acid digestion treatment, resulting in two thin outer silica shell layers enclosing a hollow space, rendering the shells quite fragile.

Discussion

Gryphaea arcuata preferred protected environments on more or less argillaceous and calcareous parts of shelves (Nori and Lathuiliere 2003). This pre-determined their shells for silicification, as silicified fossils occur primarily in shallow-water marine carbonaterich sediments (Schubert et al. 1997), at least during the Palaeozoic - silicification in post Palaeozoic rocks is comparatively rare (Schubert et al. 1997).

Examination of G. arcuata shells preserved at Southerndown revealed that different styles of silicification were present on the same specimen. Externally visible surfaces were preserved as beekite (concretionary chalcedonic shell replacements) which was seen prior to etching, as in most bivalve shells - as opposed to brachiopods where beekite is not usually visible until a surface layer of calcite is dissolved away (Holdaway and Clayton 1982). While beekite often only preserves crude features, the G. arcuata specimens exhibited some fine detail of growth lines and muscle scars, and in many specimens both valves were preserved in toto. Beekite rings generally occurred in the area of the umbo, and as a result the shell structure was not as well preserved here as in other parts of the same specimen.

On internal surfaces - facing hollow spaces within the shells - the shells were coated with small quartz crystals. This most likely reflects shell morphology as well as the mode of silicification and differences in the degree of silica availability during diagenesis, a view further enhanced by the presence of coarse quartz crystals partially filling a hollow space found post acid digestion within the shell near the umbo.

It proved difficult during this study to demonstrate the form of silica deposited in the walls of G. arcuata. However, it appears plausible that the original calcite components of the G. arcuata shells were replaced by chalcedony. Beekite is made up of chalcedony, and true replacements of bioclast structures are usually formed by chalcedony, whereas megaquartz and microcrystalline quartz infill pore spaces, forming a cast (Carson 1991). Chalcedony can form at low temperatures (<100°C; White et al. 1956, Heaney 1993). For example, the silicified corals and shells of the Hillsborough Bay Formation in Florida appear to have been silicified by chalcedony replacement in the shallow sub-surface, probably involving precipitation from meteoric fluids (Strom et al. 1981).
Figure 1: A) Left valve of *Gryphaea arcuata* shell after acid digestion; scale bar 1 cm. B) Silicified *G. arcuata* shells with carbonate-rich host rock prior to preparation; scale bar 5 cm. C) Thin section through *G. arcuata* shell; from top to bottom: the dark broken layer is adhering sediment (micritic limestone), the light continuous layer is the silicified part of the shell, and the bottom half of the image is taken up by calcite; in between the silicified and calcite layers is a very thin contact zone where the calcite is partially dissolved; scale bar 1 mm. D) Same view as C, with crossed nicols; better visible here is the spherulitic chalcedony of the outer part of the silicified layer, with some larger quartz crystals bordering the calcitic part of the shell; scale bar 1 mm.
The timing of replacement of the original shell material can be constrained by one particular event. Silica replacement is commonly an early diagenetic phenomenon (Schubert et al. 1997). There are indications that in the case of the G. arcuata examined here, aragonite dissolution predated silification: originally aragonitic fauna have not been silicified - notably ammonites, which were present in the same formation but are only preserved as internal casts. Thin section analysis revealed that G. arcuata shells displayed sharp contacts between the original calcite and the replacement chalcedony - similar to the partially silicified corals of the Hillsborough Bay Formation (Strom et al. 1981). This suggests that dissolution of calcite was followed directly by precipitation of chalcedony.

An important question with a view as to how potentially damaging acid preparation may be: was calcite dissolution complete prior to silicification? Following acid digestion, the shells exhibited a hollow space between two silicified layers. The side of each layer facing the hollow space displayed microcrystalline quartz, while the side facing the sediment was preserved as beekite. The microcrystalline quartz did not represent fine scale replacement; rather, the shell layer was preserved as a fine covering of small quartz crystals on the inside of the outwards-facing beekite layer.

This indicates three things. Firstly, initial beekite deposition on the exterior part of the shell was the first phase of the silicification process. Silica precipitation occurs only at sites of carbonate dissolution and immediately fills all available space at these sites (Holdaway and Clayton 1982). It seems plausible that the outermost layer of the shell was dissolved first, and immediately replaced by beekite. Additionally, the thickest part of the shell - in bivalves: the umbo - is where beekite replacement most commonly starts (Holdaway and Clayton 1982). In the G. arcuata shells observed for this study, coarse beekite rings were seen around the umbonal region, while the rest of the shell preserved in beekite of finer detail, indicating rapid silica precipitation around the umbo and slower precipitation elsewhere.

Secondly, following initial beekite deposition, more calcite was dissolved from the interior of the shells, creating small cavities within these thick-shelled ostreaceans, and in many specimens adjacent to the beekite. Quartz deposition commenced on the inward-facing side of the beekite layer, resulting in the fine covering of quartz crystals. Larger quartz crystals grew inside the cavities, partially filling them. However, not all calcite was dissolved, as revealed by analysis of chemical and imaging data of untreated shells. Some cavity space was infilled by ingress of sediment - many specimens were shown to contain sediment within the hollow space between the two silicified outer shell layers prior to complete acid digestion of all rock matrix. Thirdly, calcite dissolution must have been interrupted and ceased for shells not to be completely silicified. Whether this would have been accompanied by a lack of mobile silica within the sediment is difficult to answer.

A similar mode of preservation was found by Malchus and Aberhan (1998) in Lower Jurassic gryphaeidaeids from Chile: the outermost layers of the shells were often either missing or silicified, with inner shell layers not silicified. As in the Southerndown specimens, the shells had not been completely silicified. Malchus and Aberhan (1998) attributed the state of preservation of their specimens to dissolution of the outermost shell layers before or shortly after burial, with silification during post-burial diagenesis. In essence, it appears that in the Chilean example calcite dissolution stopped early during diagenesis, which prevented further silification, regardless of the availability of silica within the sediment.

Conclusions

How then does the mode of preservation at Southerndown as outlined above affect the quality of specimen preparation by acid digestion? Silica replacement, as opposed to silica permineralization, does not necessarily result in the preservation of very fine structural detail. Beekite preservation results in orbicular structures that were not part of the original shell, and is therefore not a faithful representation of the original, even though the broad structure of G. arcuata shells is identifiable in the current study.

Additionally, the appearance of hollow spaces within the shell which were not present prior to preparation indicates a loss of material by acid digestion, resulting from incomplete silification. Arguably, most morphological features required for species identification are recognisable from the exterior, silified parts of the shells. If the sole purpose of the acid preparation is identification of the species it may be irrelevant if the internal part of the shell is missing.

However, partial internal silification may also reduce the likelihood of faithfully complete external silification, and increase the chances of information being lost by acid digestion. As long as it can be
shown that silicification of specimens is incomplete, acid preparation has to proceed with extreme caution. It should not be assumed that specimens post preparation are a true image of the original specimen. If there is any chance that the collection may be used for shell structural or ontogenetic research the whole sample should not be enthusiastically committed to the happily fizzing acid bath. If in doubt it is always advisable to check the petrology first, and to experiment with a small number of specimens.

Acknowledgments
I thank Amanda Valentine, Dr Michael Streng and Professor David Harper as referee for their helpful comments.

References

To quote the summary provided by the author: "The survey took the form of walking down the Little Ouse valley from Lopham Ford to Brandon to the west and from Lopham Ford to Bungay in the east. The features encountered are described and their origin discussed." Whilst this makes it sound as if it was a matter of a few weeks, it is rapidly clear that some five years of fieldwork, observations and study have gone into this project.

This book is not a volume for the casual tourist, but is a serious volume of work for both professional geologists and geomorphologists. However, I suspect that those who may get most out of it are the interested amateur geologists of the region, the members of the Suffolk Naturalists’ Society and more enlightened walkers and visitors to the area. The Palaeolithic archaeology of the region is fully integrated and widens the potential audience, since this area is important in the history of Palaeolithic archaeology in Britain.

For it is not often that one can find a well researched, lucid and informed work explaining the shallowest of lumps and bumps and the subtleties of an eastern England landscape that would be regarded as essentially flat by most people. These most recent landscape evolution events are documented and explained with a sequence of ice sheet blockages modifying former patterns with impounded lakes, overflow drainage channels against a background of Chalk solution. The Breckland heaths of today are a former sandy lakebed.

The crux of the matter though is the Lopham Ford area, which is the watershed between Little Ouse River flowing westward and the Waveney River flowing east. A flat terrace crosses a major east-west valley. Understanding this and explaining the story to a wider audience is the motivation behind the book.

The book is not an end-to-end read, but more of a field guide with 100 pages of area/locality based descriptions and analysis. Plenty of illustrative figures and diagrams explain the development of the individual areas. For me though, the remainder of the book makes the whole story more comprehensible, with 38 full colour plates. These are high quality illustrations, bringing out the somewhat subtle features and details clearly. Many are full page oblique aerial photos, annotated with labels to elaborate on the landforms and features present.

This kind of labour of love will never be mass audience material, but it deserves to be successful, through documenting, explaining and illustrating well some of the most difficult geomorphological and geological landscape to deal with.

Matthew Parkes, Natural History Museum, Merrion Street, Dublin 2, Ireland. 8th September 2009.
Howard Brunton spent virtually all of his career at the Natural History Museum, London (NHM), undertaking substantial and international research, chiefly on Carboniferous and Recent brachiopods. He was also a past President of the Geological Curators' Group (GCG).

Charles Howard Campbell Brunton, although born in Surrey on 30th May 1935, grew up in Cheshire and went on to board at Bootham School, York. A firm Quaker, he volunteered for the Friends Ambulance Service as his National Service, rather than the Armed Forces. In fact, since his unit was heavily involved in the vicious Algerian civil war, he saw more bloodshed than most of his contemporaries, and was even locked up in a dismal Algerian gaol for two nights (wrong place - wrong time, he laconically said!). He then read geology at Liverpool University (1957-61), and subsequently went on to doctoral work at The Queen's University, Belfast, under the supervision of Alwyn Williams, the leading brachiopod worker of the day. The topic was the chiefly systematic description of a previously undescribed and extremely diverse and important silicified Carboniferous Limestone brachiopod fauna from Co. Fermanagh, subsequently published in three substantial parts of the Bulletin of the British Museum (Natural History). In 1964 he applied for and got a job at the Palaeontology Department of the NHM to succeed Helen Muir-Wood in brachiopod research, and remained there until his formal retirement in 1996, although he continued active research long after that. During that long period he published over eighty papers; and in particular played a leading part in the writing and assembly of the six-volume revised Treatise on Invertebrate Paleontology: Volume H, Brachiopoda. Not only did he write the substantial sections on productids (with Dick Grant and Stanislav Lazarev) and orthotetoids (with Alwyn Williams) in the Treatise, but took over the overall coordinating editorship of that immense project after the death of Alwyn Williams, and oversaw its completion in 2007.

In addition to essential systematic work on his beloved brachiopod faunas, he was forever trying to work out their biology and lifestyle, publishing astute papers on growth, shape and function and on many other aspects of those apparently simple but actually complex animals. He was one of the innovators in the study of brachiopod shell structure using the scanning electron microscope, of which the
NHM was well equipped. Initially to shed insight into his Palaeozoic faunas, but subsequently for their own interest, he also wrote several papers on Recent brachiopods, including those towed across the Atlantic on the hull of the wrecked S.S. Great Britain, which had originated in the Falkland Isles. Howard was one of the small group which organised the Millennium Brachiopod Congress at the NHM in 2000 and also one of the editors of the subsequent volume Brachiopods past and present (Taylor and Francis, 2001).

As well as research, he took a very active interest in all aspects of palaeontological conservation and curation, and was a founder member of the GCG, serving on Council for many years and eventually becoming President of the group. A landmark publication was the 218-page looseleaf volume published by the Geological Society of London in 1985, Guidelines for the curation of geological materials and edited by Brunton, T.P. Besterman and J.A. Cooper. Howard was also an innovator in the early days of digital curation, experimenting extensively firstly with punched card file systems, then early calculators, and finally digital computers.

As a youth and young man Howard was extremely active, playing hockey for Cheshire Schoolboys and spending much of his spare time in mountaineering, including expeditions to Greenland, Turkey and elsewhere, and was a member of the Alpine Club. But tragedy struck in 1972, when Howard was accidentally pulled off a mountain in the Lake District by a novice to whom he was roped, and fell more than a hundred feet to break his spine and badly injure his shoulder. There followed months of treatment and many operations in the famous specialised Stoke Mandeville Hospital, Buckinghamshire, and more than a year off work, and he subsequently lived the rest of his days in a wheelchair. He spent endless hours in specialised exercises to maintain high fitness in his upper torso, but suffered much pain, which continued until the end. Eileen (née Roberts), whom he had married in 1965, gave up her job as a chemist and changed her profession to move to the NHM as a librarian, and thus gave immense support to Howard as he got back to work and for the rest of his life. It was fortuitous that the new Palaeontology Wing was then under construction at the NHM, and thus Howard was able to become instrumental in ensuring that appropriate facilities for the disabled would be included within it. Howard and Eileen moved from Horsham (from which Howard had previously commuted by train) to a wheelchair-friendly bungalow in Putney, London, from where they could drive to the NHM in an adapted car, and where they stayed until they moved to South Petherton, Somerset, for the last few years until he died on 20th July 2008. It was characteristic of the man that he became influential in aiding other paraplegics like himself: he helped set up a new charity which specially adapted canal barges for holidays; he was for many years on the Management Committee of the Spinal Injuries Association, and was the first Chairman of the Somerset Local Access Forum, amongst many other related activities. But all this did not stop him travelling: Howard and Eileen went round Britain and abroad many times, both for tourism and to attend conferences, at which Howard often spoke and chaired sessions.

Despite his appalling medical problems, Howard was consistently cheerful (I can still hear his rich chuckle), and very good company within the small group which gathered for coffee on the third floor of the Palaeontology Department. He was invariably welcoming to the many visitors to the Brachiopod section, and co-authored papers with colleagues from home and overseas, particularly Fernando Alvarez (Spain), Dave Mackinnon and Daphne Lee (New Zealand), and David Mundy (Canada), as well as several with Alwyn Williams, his original supervisor. Our heartfelt sympathies go out to Eileen.

Robin Cocks
THE GEOLOGICAL CURATOR

Publication scheme
Two issues of The Geological Curator are published for each year (usually in the Spring and the Autumn); a complete volume consists of ten issues (covering five years) and an index.

Notes to authors
Articles should be submitted as hard copy in the journal style, on good quality paper (A4 size) double spaced, with wide margins, and on disk (although e-mail submissions are also accepted). Three copies should be sent to the Editor, Matthew A. Parkes, Natural History Museum, Merrion St., Dublin 2, Ireland (tel 353-87-122-1967; e-mail: mparkes@museum.ie). Line drawings should be prepared in black ink at the desired publication size. Photographs for halftone reproduction should be printed on glossy paper. Both drawings and photographs should be proportioned to utilise either the full width of one column (85mm) or two (175mm). References in the text follow the Harvard system, i.e. name and date '{Jones 1980}' or 'Jones (1980)'. All references are listed alphabetically at the end of the article and journal titles should be cited in full. Authors will normally receive proofs of text for correction. Major articles are refereed. Copyright is retained by authors.

If submitting articles electronically please note the following:
1. Do not 'upper case' headings. Keep all headings in upper and lower case.
2. Use italics rather than underline for latin names and expressions, journal names and book titles. Use bold for volume numbers in references.
3. Line spacing. Your hard copy should be double spaced. If possible, single space your copy on disk. Use a single (hard) carriage return at the end of each paragraph.
4. Single space-bar between words, double space-bar between sentences.
5. Do not attempt to format your article into columns. Use a minimum of tabs and indents.

Regular features
LOST AND FOUND enables requests for information concerning collections and collectors to reach a wide audience. It also contains any responses to such requests from the readership, and thereby provides an invaluable medium for information exchanges. All items relating to this column should be sent to the Editor (address above). FACT FILE contains basic information for the use of curators. All items relating to this column should be sent to the Editor (address above). NOTES comprising short pieces of less than two pages are particularly welcome. Please send contributions to the Editor (address above). GALLERY REVIEW comprising short pieces on new museums or exhibitions. CONSERVATION FORUM helps keep you up to date with developments in specimen conservation. Information on techniques, publications, courses, conferences etc. to Dr Caroline Buttler, National Museums and Galleries of Wales, Cathays Park, Cardiff CF10 3NP, Wales, U.K.

BOOK REVIEWS contains informed opinion about recently published books of particular relevance to geology in museums. The Editor welcomes suggestions of suitable titles for review, and unsolicited reviews (of 500 words maximum) can be accepted at his discretion. Publishers should submit books for review to David Craven (see inside front cover for address). INFORMATION SERIES ON GEOLOGICAL COLLECTION LABELS consists of loose A4 size sheets, issued irregularly, which carry reproductions of specimen labels usually written by a collector of historic importance. The aim of the series is to aid recognition of specimens originating from historically important collections. Contact the Editor.

Advertisement charges
Full A4 page £80 per issue
Half A4 page £60 per issue
Quarter A4 page £40 per issue
25% discount for space bought in three or more issues. Further details from the Editor. Inserts such as publishers' 'flyers' can be mailed with issues of The Geological Curator for a fee of £80 per issue. 350 copies of any insert should be sent to the Editor.

Subscription charges 2009
UK Personal Membership £15 per year
Overseas Personal Membership £18/ US$32/ EURO 25 per year
UK Institutional Membership £20 per year
Overseas Institutional Membership £22/ US$40/ EURO 32 per year
All enquiries to the Treasurer, John Nudds, Department of Earth Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K. (tel: +44 161 275 7861; e-mail: john.nudds@manchester.ac.uk).

Backnumbers
Backnumbers of The Geological Curator (and its predecessor, the Newsletter of the Geological Curators' Group) are available - please enquire with your requirements. All issues are available for download from www.geocurator.org.