2012, Oxford:

Talks:

Posters:


The Dorset Fossil Code database

Richard Forrest

plesiosaur.com

The Jurassic Coast Fossil Database is a resource open to anyone to use. Its primary purpose is to enable people to see what specimens are being discovered and to allow access to that information, particularly for the research community.

A Microsoft Access database was created under West Dorset Fossil Code recording scheme and located in the Charmouth Heritage Centre. This limited the usability of the database, in particular that access is only from one location. There is also the risk of data loss if the host computer is faulty or stolen. A decision was made to migrate to an on-line version so that the database can be accessed from anywhere, and that data is stored much more securely.

The existing flat-field database was converted into a relational database to give much increased flexibility in accessing data. Open-source software, mysql and php, were used to build the database and the web interface. There is a large community of developers familiar with these applications, and such databases are more or less infinitely scalable. Data be added from any computer linked to the internet. Access is controlled by an hierarchical system of users, such that anyone can view limited information on the specimens, but only those with access rights can add or amend data. The system is being tested on-line now, and will be more formally launched when feedback from users and academic interests has been taken into account in further development.

Virtual palaeontology: an introduction

Russell Garwood1,2

1School of Materials, The University of Manchester, Manchester, United Kingdom

2School of Earth, Atmospheric, and Environmental Sciences, The University of Manchester, Manchester, United Kingdom

Virtual Palaeontology is the application of 3D data acquisition and computer reconstruction techniques to palaeontological problems. While the majority of fossils are flattened, and splitting a rock open to investigate the revealed surface is highly successful, three-dimensionally preserved specimens present problems for these traditional techniques. Virtual palaeontology can reveal their morphology in full, aid research, and provide an avenue for the digital archiving and dissemination of fossils. This talk will provide an introduction to the field including its history and an overview of surface-based data acquisition techniques. It will detail tomographic (slice-based) methods, both destructive and non-destructive, and also introduce different aspects of data visualisation. The talk will emphasise the power of these techniques for curation and examine considerations for digitising collections through virtual fossils. It will conclude with a case study demonstrating the power of virtual palaeontology for research.

Mechanical Preparation of Oligocene Fishes

Mark.R Graham

Natural History Museum

The Conservation Centre at NHM London undertook fossil preparation upon three Oligocene fish specimens which were of historical significance, being part of the Enniskillen Collection, purchased by the museum in the late 1880s. The poster details the methodology employed during preparation of the specimens and focuses on a novel approach taken to reveal details of a key morphological feature on one of the specimens, the remora Uropteryx. This specimen was initially visible laterally across one surface of the shale with a layer of matrix covering the surface detail of the bones. The bones were initially developed by air abrasion which suggested that a key morphological feature ( the adapted dorsal fin forming the characteristic ‘sucker’) might be present and better exposed from the opposite (left lateral) side of the specimen. Due to the fragile nature of the fossil and extremely small features requiring preparation, a combination of techniques was employed successfully and these are recorded in the poster.

Going to the other side – Acid preparation of dinosaur bones from Atherfield Bay

Lu Allington-Jones

Natural History Museum

This poster outlines the acid preparation of a block of the Shepherd’s Chine Member of the Wealden Group from the Isle of Wight, England. The block was severely weathered on one side and preparation from the reverse was desirable. The preservation of the association of the bones was also requested. Unfortunately the block measured little more than 1cm in depth and a system of temporary and permanent supports were devised to overcome this. These comprised silicon rubber, Synocryl 9123s and HXTAL. Link to Poster

Bad influence - Acetic acid preparation of a pterosaur in metamorphosed limestone

Lu Allington-Jones

Natural History Museum

This project combined the challenge of extracting extremely fragile and fragmented pterosaur bones in a limestone too hard for percussive preparation tools. Acetic acid preparation was the obvious choice for this material, but further problems developed. The limestone had undergone contact metamorphism, leading to uneven hardness and acid resistance. It was found that 10% acetic acid was needed for 48 hour immersions before any effect was observed on the metamorphosed limestone. This high strength had undesirably severe effects on softer sections of the matrix, causing undercuts and pockets to develop. This was successfully combated using localised barriers made from microcrystalline wax and Synocryl 9123s. Link to Poster